【總結(jié)】三角函數(shù)的圖象與性質(zhì)(三)一、填空題1.函數(shù)y=tanx-1的定義域是____________.2.函數(shù)y=3tan(ωx+π6)的最小正周期是π2,則ω=________.3.函數(shù)y=tan??????x+2π5,x∈R且x≠110π+kπ,k∈Z離坐標(biāo)原點最近的對稱中心的坐標(biāo)是____
2024-12-05 10:17
【總結(jié)】第一頁,編輯于星期六:點二十七分。,1.4三角函數(shù)的圖象與性質(zhì)正弦函數(shù)、余弦函數(shù)的圖象,第二頁,編輯于星期六:點二十七分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點二十七分。,第四頁...
2024-10-22 18:35
【總結(jié)】三角函數(shù)的圖象與性質(zhì)(二)一、填空題1.函數(shù)y=sin(π+x),x∈??????-π2,π的單調(diào)增區(qū)間是____________.2.函數(shù)y=2sin(2x+π3)(-π6≤x≤π6)的值域是________.3.sin1,sin2,sin3按從小到大排列的順序為________________
【總結(jié)】1.三角函數(shù)的圖象與性質(zhì)情景:前面我們學(xué)習(xí)了三角函數(shù)的誘導(dǎo)公式,我們是借助于單位圓推導(dǎo)出來的.思考:我們能否借助三角函數(shù)的圖象來推導(dǎo)或直接得出三角函數(shù)的一些性質(zhì)呢?1.“五點法”作正弦函數(shù)圖象的五個點是__________、________、________、________、________.答案:(0,0
2024-12-08 20:24
【總結(jié)】三角函數(shù)的圖象與性質(zhì)(一)一、填空題1.函數(shù)y=2cosx+1的定義域是______________.2.在(0,π)內(nèi)使sinx|cosx|的x的取值范圍是________.3.方程sinx=x10的根的個數(shù)是________.4.設(shè)0≤x≤2π,且|cosx-sinx|=sinx-
【總結(jié)】任意角的三角函數(shù)考查知識點及角度難易度及題號基礎(chǔ)中檔稍難三角函數(shù)線的概念問題1、2、3三角函數(shù)線的應(yīng)用4、5、68、9其他問題7、10111.已知MP,OM,AT分別為60°角的正弦線、余弦線和正切線,則下列結(jié)論正確的是()A.MP<OM<AT
2024-11-19 23:27
【總結(jié)】三角函數(shù)的誘導(dǎo)公式誘導(dǎo)公式(一)sin(360)sincos(360)costan(360)tankkkkZ????????????????其中sin(2)sincos(2)costan(2)tank
2024-11-18 12:17
【總結(jié)】山東瀚海書業(yè)有限公司出品瀚海導(dǎo)與練成功永相伴THEEND
2025-06-12 18:42
【總結(jié)】兩角和與差的正弦、余弦、正切公式????????sincoscossinsin????????????sinsincoscoscos????????????tantantantantan?1???????????sincoscossinsin????
2024-11-18 08:49
【總結(jié)】任意角的三角函數(shù)課本例題是我們學(xué)習(xí)的模版,我們可以通過模仿它完成其他同類練習(xí),還可以通過掌握它的思想促類旁通、舉一反三。如果在平時學(xué)習(xí)中我們能自己將例題改編成同類題并解決它們,我們的解題水平會有很大的提高。課本例6:若3sin5???,求cos?、?tan的值。題型分析:本題實際上是考查同角三角函數(shù)關(guān)系中平方關(guān)系以及商數(shù)關(guān)系的直接應(yīng)用。
2024-11-19 20:39
【總結(jié)】任意角的三角函數(shù)【學(xué)習(xí)要求】1.通過借助單位圓理解并掌握任意角的三角函數(shù)定義,了解三角函數(shù)是以實數(shù)為自變量的函數(shù).2.借助任意角三角函數(shù)的定義理解并掌握正弦、余弦、正切函數(shù)在各象限內(nèi)的符號.3.通過對任意角的三角函數(shù)定義的理解,掌握終邊相同角的同一三角函數(shù)值相等.【學(xué)法指導(dǎo)】1.在初中所學(xué)習(xí)的銳角三角函數(shù)的基礎(chǔ)上過渡到任意角三角函數(shù)的概
【總結(jié)】課題任意角的三角函數(shù)教學(xué)目標(biāo)知識與技能任意角的三角函數(shù)的定義,會求角α的各三角函數(shù)值過程與方法正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù)情感態(tài)度價值觀學(xué)習(xí)轉(zhuǎn)化的思想,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)、一絲不茍的科學(xué)精神重點任意角的三角函數(shù)的定義;以及這三種函數(shù)的第一組誘導(dǎo)公式。難點用
【總結(jié)】1.正切函數(shù)的性質(zhì)與圖象1.理解正切函數(shù)的性質(zhì),掌握正切函數(shù)的圖象的作法.2.能利用正切函數(shù)的圖象與性質(zhì)解決與正切函數(shù)有關(guān)的基本問題.基礎(chǔ)梳理一、正切函數(shù)的性質(zhì)1.正切函數(shù)的定義域和值域:定義域為??????x???x≠kπ+π2,k∈Z,值域為R.2.正切函數(shù)的周期性:y
2024-11-19 17:41
【總結(jié)】利用三角函數(shù)定義解題設(shè)角?的終邊上任意一點P的坐標(biāo)是),(yx,它與原點的距離是r(22yxr??),那么ry??sin,rx??cos,xy??tan,利用三角函數(shù)的定義,可巧妙地解決一類三角函數(shù)題。一、求值:例1:已知31tan??x,求????22coscossin2sin3
【總結(jié)】課題:三角函數(shù)的圖象與性質(zhì)(3)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1.了解利用正切線畫出正切函數(shù)圖象的方法,能通過觀察正切函數(shù)圖象,利用類比思想歸納正切函數(shù)的性質(zhì);2.提升學(xué)生作圖能力,分析能力和解決問題的能力,進(jìn)行數(shù)形結(jié)合思想和類比思想的滲透.【課前
2024-11-20 01:06