【總結】欄目導引新知初探思維啟動典題例證技法歸納知能演練輕松闖關第二章圓錐曲線與方程2.橢圓的簡單幾何性質習題課第1課時橢圓的簡單幾何性質欄目導引新知初探思維啟動典題例證技法歸納知能演練輕松闖關第二章圓錐曲線與方程學習導航
2025-07-25 10:50
【總結】課題:橢圓的簡單幾何性質設計意圖:本節(jié)內容是橢圓的簡單幾何性質,是在學習了橢圓的定義和標準方程之后展開的,它是繼續(xù)學習雙曲線、拋物線的幾何性質的基礎。因此本節(jié)內容起到一個鞏固舊知,熟練方法,拓展新知的承上啟下的作用,是發(fā)展學生自主學習能力,培養(yǎng)創(chuàng)新能力的好素材。本教案的設計遵循啟發(fā)式的教學原則,以培養(yǎng)學生的數(shù)形結合的思想方法,培養(yǎng)學生觀察、實驗、探究、驗證與交流等數(shù)學活動能力。教學目
2025-04-17 04:22
【總結】基礎自主演練x2+my2=1的焦點在y軸上,長軸長是短軸長的兩倍,則m的值是()(A)(B)(C)2(D)4【解析】選即0m1,141222yx1.1m??11,m??112,m.m4????
2025-07-24 06:25
【總結】橢圓的幾何性質知識回顧1F2Fxyo...M(x,y)(-c,0)(c,0)F1(0,-c)F2(0,c)xy0M(x,y)...12222??byax橢圓的標準方程:12222??bxay焦點在x軸時焦點
2025-07-25 10:43
【總結】標準方程范圍對稱性頂點坐標焦點坐標半軸長離心率a、b、c的關系22221(0)xyabab????|x|≤a,|y|≤b關于x軸、y軸成軸對稱;關于原點成中心對稱(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)長半軸
2025-05-10 00:31
【總結】雙曲線的標準方程及其幾何性質一、雙曲線的標準方程及其幾何性質.1.雙曲線的定義:平面內與兩定點F1、F2的距離差的絕對值是常數(shù)(大于零,小于|F1F2|)的點的軌跡叫雙曲線。兩定點F1、F2是焦點,兩焦點間的距離|F1F2|是焦距,用2c表示,常數(shù)用2表示。(1)若|MF1|-|MF2|=2時,曲線只表示焦點F2所對應的一支雙曲線.(2)若|MF1|-|MF2|=-2時,曲線只表
2025-07-14 18:45
【總結】......雙曲線的標準方程及其幾何性質一、雙曲線的標準方程及其幾何性質.1.雙曲線的定義:平面內與兩定點F1、F2的距離差的絕對值是常數(shù)(大于零,小于|F1F2|)的點的軌跡叫雙曲線。兩定點F1、F2是焦點,兩焦點間的距離|F1F
2025-07-14 18:54
【總結】《橢圓的簡單幾何性質》教學設計【教學目標】:(1).使學生掌握橢圓的性質,能根據(jù)性質正確地作出橢圓草圖;掌握橢圓中a、b、c的幾何意義及相互關系;(2)通過對橢圓標準方程的討論,使學生知道在解析幾何中是怎樣用代數(shù)方法研究曲線性質的,逐步領會解析法(坐標法)的思想。(3)能利用橢圓的性質解決實際問題。:培養(yǎng)學生觀察、分析、抽象、概括的邏輯思維能力和運用數(shù)形
2025-04-17 04:14
【總結】典型例題一例1橢圓的一個頂點為,其長軸長是短軸長的2倍,求橢圓的標準方程.分析:題目沒有指出焦點的位置,要考慮兩種位置.解:(1)當為長軸端點時,,,橢圓的標準方程為:;(2)當為短軸端點時,,,橢圓的標準方程為:;說明:橢圓的標準方程有兩個,給出一個頂點的坐標和對稱軸的位置,是不能確定橢圓的橫豎的,因而要考慮兩種情況.典型例題二例2一個
2025-03-25 04:50
【總結】出題人:李秋天陳繼波鄒玉超【學習目標】1.熟練掌握橢圓的范圍,對稱性,頂點等簡單幾何性質2.掌握標準方程中的幾何意義,以及的相互關系3.理解、掌握坐標法中根據(jù)曲線的方程研究曲線的幾何性質的一般方法【學習重點】:橢圓的幾何性質【學習難點】:如何貫徹
2025-07-24 04:51
【總結】Xupeisen110高中數(shù)學 橢圓及其標準方程一、教學目標(一)知識教學點使學生理解橢圓的定義,掌握橢圓的標準方程的推導及標準方程.(二)能力訓練點通過對橢圓概念的引入與標準方程的推導,培養(yǎng)學生分析探索能力,增強運用坐標法解決幾何問題的能力.(三)學科滲透點通過對橢圓標準方程的推導的教學,可以提高對各種知識的綜合運用能力.二
2025-08-04 17:50
【總結】轉載橢圓及其標準方程2009年05月04日15:53:11來源:數(shù)學交流社區(qū)【字體:大?中?小】橢圓及其標準方程《橢圓及其標準方程》是繼學習圓以后運用“曲線和方程”理論解決具體的二次曲線的又一實例。從知識上講,它是對前面所學的運用坐標法研究曲線的幾何性質的又一次實際演練,同時它也是進一步研究橢圓幾何性質的基礎;從方法上講,它幫助我們運用類比方法更好地研
2025-08-04 17:37
【總結】復習::在同一平面內,到兩定點F1、F2的距離和為常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓。:22221(0)xyabab????22221(0)yxabab????a,b,c的關系是:a2=b2+c2一、橢圓的范圍oxy由122
2025-01-19 22:19
【總結】第一課時天涯海角目標1、熟悉橢圓的幾何性質(對稱性、范圍、頂點、離心率);2、掌握橢圓中a、b、c、e的幾何意義以及a、b、c的相互關系;3、理解橢圓的離心率對橢圓形狀的影響;4、能利用橢圓的幾何性質求橢圓的標準方程。問題如何畫橢圓的圖形(草圖)123-1
2024-11-12 16:43
【總結】橢圓的定義及標準方程一、天體運行軌跡:太陽系運行簡圖:地球繞太陽旋轉軌跡:二、橢圓的定義與標準方程(一)定義:到兩定點距離之和等于定值(大于兩定點間的距離)的點軌跡.兩定點叫焦點,焦點間的距離叫焦距.看
2024-10-24 15:38