【總結(jié)】新課標(biāo)高中一輪總復(fù)習(xí)理數(shù)理數(shù)第四單元三角函數(shù)與平面向量第22講簡單的三角恒等變換能運(yùn)用同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式、兩角和與差的三角公式進(jìn)行簡單的三角恒等變換.△ABC中,已知sin(A-B)cosB+cos(A-B)sinB≥1,則△ABC是()A
2024-11-21 01:05
【總結(jié)】第六節(jié)簡單的三角恒等變換考綱點(diǎn)擊能運(yùn)用兩角和與差的正弦、余弦、正切公式以及二倍角的正弦、余弦和正切公式進(jìn)行簡單的恒等變換(包括導(dǎo)出積化和差、和差化積、半角公式,但對這三組公式不要求記憶).熱點(diǎn)提示恒等變換,進(jìn)而考查三角函數(shù)的圖象和性質(zhì)是高考的熱點(diǎn)內(nèi)容.、向量為載體考查恒等變形能力以及運(yùn)用正、余弦定理判定
2024-11-10 07:28
【總結(jié)】第六節(jié)簡單的三角恒等變換基礎(chǔ)梳理1、用于三角恒等變換的公式主要有:(1)____________________________,運(yùn)用它們可實(shí)現(xiàn)弦函數(shù)之間、弦函數(shù)與切函數(shù)之間的互化,其主要功能是變名;(2)________,運(yùn)用它們可實(shí)現(xiàn)與一個(gè)銳角有關(guān)的不同角之間的轉(zhuǎn)化,其主要功能是變角;(3)_____________________,它
2024-11-12 01:24
【總結(jié)】簡單的三角恒等變換一、填空題1.若π<α<π,sin2α=-,求tan________________2.已知sinθ=-,3π<θ<,則tan的值為___________.4.已知α為鈍角、β為銳角且sinα=,sinβ=,則cos的值為____________.5.設(shè)5π<θ<6π,cos=a,則sin的值等于________________
2025-03-25 06:58
【總結(jié)】2022/8/231函數(shù)y=Asin(?x+?)的圖象2022/8/232復(fù)習(xí)練習(xí)?1.要得到函數(shù)y=2sinx的圖象,只需將y=sinx圖象()B.縱坐標(biāo)擴(kuò)大原來
2025-07-26 12:08
【總結(jié)】三角函數(shù)知識點(diǎn)總結(jié)1、任意角:正角:;負(fù)角:;零角:;2、角的頂點(diǎn)與重合,角的始邊與重合,終邊落在第幾象限,則稱為第幾象限角.第一象限角的集合為第二象限角的集合為
2025-06-19 18:44
【總結(jié)】1、同角三角函數(shù)的基本關(guān)系知識回顧??αcosαsin221Z)π2π(αtanαcosαsinα????kk,2、和(差)角的正弦、余弦、正切公式知識回顧??β)sin(α???sincoscossin?α??β)cos(
2024-10-16 20:26
【總結(jié)】2021-1-23高中數(shù)學(xué)蘇教版必修4三角函數(shù)知識點(diǎn)總結(jié)一、角的概念和弧度制:(1)在直角坐標(biāo)系內(nèi)討論角:角的頂點(diǎn)在原點(diǎn),始邊在x軸的正半軸上,角的終邊在第幾象限,就說過角是第幾象限的角。若角的終邊在坐標(biāo)軸上,就說這個(gè)角不屬于任何象限,它叫象限界角。(2)①與?角終邊相同的角的集合:},2|{},360|{0ZkkZkk?????
2024-12-18 04:37
【總結(jié)】三角函數(shù)的圖象和性質(zhì)函數(shù)y=Asin(ωx+φ)的圖象0-1/201/20y=1/2sinx0-2020y=2sinx0-1010y=sinx0x1、作出以下三個(gè)函數(shù)的圖象小結(jié):函數(shù)y=Asinx的圖象是在y=sinx圖象的基礎(chǔ)上橫坐標(biāo)不變縱坐標(biāo)變成原來的A倍。A通常叫振幅。P49思考與交
2024-11-07 02:34
【總結(jié)】三角恒等變換專題復(fù)習(xí)(一)2012-8-7一、基本內(nèi)容串講1.兩角和與差的正弦、余弦和正切公式如下:;;對其變形:tanα+tanβ=tan(α+β)(1-tanαtanβ),有時(shí)應(yīng)用該公式比較方便。2.二倍角的正弦、余弦、正切公式如下:...要熟悉余弦“倍角”與“二次”的關(guān)系(升角
2025-03-24 05:44
【總結(jié)】......三角恒等變換大題=7-4sinxcosx+4cos2x-4cos4x的最大值和最小值.(x)=.(1)求f的值;(2
【總結(jié)】西安遠(yuǎn)東仁民補(bǔ)習(xí)學(xué)校一對一個(gè)性化輔導(dǎo)中心學(xué)員輔導(dǎo)教案學(xué)生姓名:授課時(shí)間2016年11月1日(星期二)科目:數(shù)學(xué)三角函數(shù)的平移伸縮變換三角函數(shù)圖象的變換:平移變換和伸縮變換。圖象變換的兩種方法:圖象變換有兩種方法,在解題中,一般采用先
2025-08-05 06:44
【總結(jié)】三角函數(shù)圖像的變換(學(xué)案)一,探究:2y(1)畫出函數(shù),x?R的簡圖。x+xyy3ppOx(2)畫出函數(shù),x?R的簡圖。x-xy
2025-08-17 07:18
【總結(jié)】函數(shù)的圖象sin()yAx????執(zhí)教:李剛豪例題分析課堂練習(xí)復(fù)習(xí)圖象退出函數(shù)的圖象sin()yAx????sinyAx?sinyx??sin()yx???sin()yAx????()()yfxyfx
2024-11-18 16:11
【總結(jié)】圖像變換高一(13)班湯勇問題提出y=sinx的定義域、值域分別是什么?它有哪些基本性質(zhì)??y-1xO1π2π3π4π5π6π-2π-3π-4π-5π-6π-π、、A對函數(shù)的圖象的影
2025-07-26 00:20