【總結(jié)】圓錐曲線基礎(chǔ)訓(xùn)練一、選擇題:1.已知橢圓上的一點(diǎn)到橢圓一個(gè)焦點(diǎn)的距離為,則到另一焦點(diǎn)距離為()A.B.C.D.2.若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長的和為,焦距為,則橢圓的方程為()A.B.C.或D.以上都不對3
2025-06-22 15:57
【總結(jié)】......圓錐曲線練習(xí)題(文)第I卷(選擇題)一、選擇題1.雙曲線的漸近線方程是A.B.C.D.2.已知P是以F1、F2為焦點(diǎn)的雙曲線上一點(diǎn),若,則三角形的面積為()
2025-03-25 00:04
【總結(jié)】圓錐曲線一、橢圓:(1)橢圓的定義:平面內(nèi)與兩個(gè)定點(diǎn)的距離的和等于常數(shù)(大于)的點(diǎn)的軌跡。其中:兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),焦點(diǎn)間的距離叫做焦距。注意:表示橢圓;表示線段;沒有軌跡;(2)橢圓的標(biāo)準(zhǔn)方程、圖象及幾何性質(zhì):中心在原點(diǎn),焦點(diǎn)在軸上中心在原點(diǎn),焦點(diǎn)在軸上標(biāo)準(zhǔn)方程圖形xOF1F2PyA2A1B1B2
2025-06-19 02:15
【總結(jié)】圓錐曲線習(xí)題課1.直線與圓錐曲線的位置關(guān)系:用△判定。2.中點(diǎn)弦問題,常用點(diǎn)差法解決。3.對于垂直問題,常用到x1x2+y1y2=0。4.對于分點(diǎn)問題,可利用向量關(guān)系列出方程。5.解題工具有:韋達(dá)定理、弦長公式等。復(fù)習(xí)回顧:當(dāng)0°≤θ≤180°時(shí),方程x2cosθ+
2025-08-05 04:08
【總結(jié)】圓錐曲線橢圓專項(xiàng)訓(xùn)練【例題精選】:例1求下列橢圓的標(biāo)準(zhǔn)方程: (1)與橢圓有相同焦點(diǎn),過點(diǎn); (2)一個(gè)焦點(diǎn)為(0,1)長軸和短軸的長度之比為t; (3)兩焦點(diǎn)與短軸一個(gè)端點(diǎn)為正三角形的頂點(diǎn),焦點(diǎn)到橢圓的最短距離為。 (4) 例2已知橢圓的焦點(diǎn)為。 (1)求橢圓的標(biāo)準(zhǔn)方程; (2)設(shè)點(diǎn)P在這個(gè)橢圓上,且,求:的值
2025-06-22 14:59
【總結(jié)】大慶目標(biāo)教育圓錐曲線一、知識結(jié)構(gòu)在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點(diǎn)的集合或軌跡)上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解;(2);這條曲線叫做方程的曲線.點(diǎn)與曲線的關(guān)系若曲線C的方程是f(x,y)=0,則點(diǎn)P0(x0,y0)在曲線C上f(x0,y0)=0;點(diǎn)P0(x0,y0)
2025-08-04 14:02
【總結(jié)】習(xí)題精選精講圓錐曲線:(1)第一定義中要重視“括號”內(nèi)的限制條件:橢圓中,與兩個(gè)定點(diǎn)F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當(dāng)常數(shù)等于時(shí),軌跡是線段FF,當(dāng)常數(shù)小于時(shí),無軌跡;雙曲線中,與兩定點(diǎn)F,F(xiàn)的距離的差的絕對值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的“絕對值”與<|FF|不可忽視。若=|FF|,則軌跡是以F,F(xiàn)為端點(diǎn)的兩條射線,若﹥|FF|,則軌跡不存在。若去
2025-08-05 03:29
【總結(jié)】(2,0),右頂點(diǎn)為(1)求雙曲線C的方程;(2)若直線與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且(其中O為原點(diǎn)).求k的取值范圍.解:(Ⅰ)設(shè)雙曲線方程為由已知得故雙曲線C的方程為(Ⅱ)將由直線l與雙曲線交于不同的兩點(diǎn)得即①設(shè),則而于是②由①、②得故k的取值范圍為2..已知橢圓C:+=
2025-06-22 15:52
【總結(jié)】......:交于P、Q兩不同點(diǎn),且△OPQ的面積=,其中O為坐標(biāo)原點(diǎn).(Ⅰ)證明和均為定值;(Ⅱ)設(shè)線段PQ的中點(diǎn)為M,求的最大值;(Ⅲ)橢圓C上是否存在點(diǎn)D,E,G,使得?若存在,判斷△DEG的形狀;若不存在,
2025-03-25 00:03
【總結(jié)】2022年高考數(shù)學(xué)試題分類匯編——圓錐曲線一、選擇題1.(2022全國卷Ⅰ理)設(shè)雙曲線21xyab??(a>0,b>0)的漸近線與拋物線y=x2+1相切,則該雙曲線的離心率等于()(A)3(B)2(C)5(D)6解:設(shè)切點(diǎn)0(,)Pxy,則切線的斜率為0'|2xy?.由
2025-08-05 19:24
【總結(jié)】運(yùn)用聯(lián)想探究圓錐曲線的切線方程現(xiàn)行人教版統(tǒng)編教材高中數(shù)學(xué)第二冊上、第75頁例題2,給出了經(jīng)過圓上一點(diǎn)的切線方程為;當(dāng)在圓外時(shí),過點(diǎn)引切線有且只有兩條,過兩切點(diǎn)的弦所在直線方程為。那么,在圓錐曲線中,又將如何?我們不妨進(jìn)行幾個(gè)聯(lián)想。聯(lián)想一:(1)過橢圓上一點(diǎn)切線方程為;(2)當(dāng)在橢圓的外部時(shí),過引切線有兩條,過兩切點(diǎn)的弦所在直線方程為:證明:(1)的兩邊對求導(dǎo),得,得,由
2025-06-24 04:24
【總結(jié)】WORD資料可編輯圓錐曲線自編講義之基本量要求熟悉圓錐曲線的a、b、c、e、p、漸近線方程、準(zhǔn)線方程、焦點(diǎn)坐標(biāo)等數(shù)據(jù)的幾何意義和相互關(guān)系。(2011安徽理2)雙曲線的實(shí)軸長是 (A)2 (B)2 (C)4 (D)4【答案】C
2025-04-17 00:20
【總結(jié)】......數(shù)學(xué)圓錐曲線測試高考題一、選擇題:1.(2006全國II)已知雙曲線的一條漸近線方程為y=x,則雙曲線的離心率為()(A)(B)(C)
【總結(jié)】數(shù)學(xué)圓錐曲線測試高考題一、選擇題:1.(2006全國II)已知雙曲線的一條漸近線方程為y=x,則雙曲線的離心率為()(A)(B)(C)(D)2.(2006全國II)已知△ABC的頂點(diǎn)B、C在橢圓+y2=1上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長是()
2025-08-05 04:54
【總結(jié)】......圓錐曲線一、橢圓:(1)橢圓的定義:平面內(nèi)與兩個(gè)定點(diǎn)的距離的和等于常數(shù)(大于)的點(diǎn)的軌跡。其中:兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),焦點(diǎn)間的距離叫做焦距。注意:表示橢圓;表示線段;沒有軌跡;(2)橢圓的標(biāo)準(zhǔn)方程、
2025-06-19 00:18