【總結】一勾股定理驗證(等面積法)解題思路:將所給三角形拼成大圖形用等面積法:大圖形面積=各小圖形面積和。例1、如圖所示,可以利用兩個全等的直角三角形拼出一個梯形.借助這個圖形,你能用面積法來驗證勾股定理嗎?例2、如圖矩形是由四個直角三角形拼成,題中已給出各邊長,試證明勾股定理。例3、圖中的正方形均是由Rt△ABC拼成,試驗證勾股定理。2、
2025-06-22 03:47
【總結】勾股定理評估試卷(1)一、選擇題(每小題3分,共30分)1.直角三角形一直角邊長為12,另兩條邊長均為自然數,則其周長為().(A)30(B)28(C)56(D)不能確定2.直角三角形的斜邊比一直角邊長2cm,另一直角邊長為6cm,則它的斜邊長(A)4cm (B)8cm (C)10cm
【總結】勾股定理??剂曨}勾股定理的直接應用:1、在Rt△ABC中,∠C=90°,a=12,b=16,則c的長為()A:26B:18C:20D:212、在平面直角坐標系中,已知點P的坐標是(3,4),則OP的長為()A:3B:4
2025-03-24 13:00
【總結】與直角有關的折疊問題(一),將矩形ABCD的四個角向內折起,恰好拼成一個無縫隙無重疊的四邊形EFGH,若EH=9厘米,EF=12厘米,則邊AD的長是(????)A.12厘米B.15厘米C.20厘米D.21厘米2.?如圖,在矩形ABCD中,AB=4,BC=8,將矩形ABCD沿EF折
2025-03-24 12:58
【總結】類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點撥:寫解的
【總結】11頁共11頁勾股定理經典例題詳解熟悉下列勾股數,對解題是會有幫助的: ?、?、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.類型二:勾股定理的構造應用1、如圖,已知:在中,,,.求:BC的長. ,已知:,,于P.求證:.:如圖,∠B=∠D=90°,∠A=60
【總結】小專題(二) 利用勾股定理解決折疊與展開問題 類型1 利用勾股定理解決平面圖形的折疊問題1.如圖,有一張直角三角形紙片,兩直角邊AC=5cm,BC=10cm,將△ABC折疊,使點B與點A重合,折痕為DE,則CD的長為( )A.cmB.cmC.cmD
2025-06-26 06:17
【總結】勾股定理單元測試題及答案一、選擇題1、下列各組數中,能構成直角三角形的是()A:4,5,6B:1,1,C:6,8,11D:5,12,232、在Rt△ABC中,∠C=90°,a=12,b=16,則c的長為()A:26B:18C:20D:21
2025-06-22 03:44
【總結】典型例題知識點一、直接應用勾股定理或勾股定理逆定理例1:如圖,在單位正方形組成的網格圖中標有AB、CD、EF、GH四條線段,其中能構成一個直角三角形三邊的線段是() A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF勾股定理說到底是一個等式,而含有未知數的等式就是方程。所以,在利用勾股定理求線段的長時
2025-06-22 04:18
【總結】勾股定理練習題一、基礎達標:1.下列說法正確的是( ?。゛、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2.2.Rt△ABC的三條邊長分別是、、,則下列各式成立的是( ?。〢.B. C
2025-06-22 07:15
【總結】勾股定理單元測試學號姓名得分一、選擇題(請將答案填在表格內,每題4分,共32分)題號12345678答案CBCABDBC1.下列各組數據中的三個數,可作為三邊長構成直角三角形的是()A.1,2,3
2025-01-14 13:23
【總結】:如圖,在△ABC中,∠C=90°,點M在BC上,且BM=AC,點N在AC上,且AN=MC,AM與BN相交于點P,求證:∠BPM=45°答案:如圖,過點M作ME∥=(平行等于)AN,連NE,BE,則四邊形AMEN為平行四邊形得NE=AM,ME⊥BC∵ME=CM,∠EMB=∠MCA=90°,BM=AC∴△BEM≌△AMC,得BE=AM=NE,∠1=∠2
2025-06-23 07:41
【總結】,透明的圓柱形容器(容器厚度忽略不計)的高為12cm,底面周長為10cm,在容器內壁離容器底部3cm的點B處有一飯粒,此時一只螞蟻正好在容器外壁,且離容器上沿3cm的點A處,則螞蟻吃到飯粒需爬行的最短路徑是A.13cm B.cm C.cm D.cm2.如圖,一只螞蟻沿著邊長為2的正方體表面從點A出發(fā),經過3個面爬到點B,如果它運動的路徑是最短的,則AC的長為
2025-03-24 12:59
【總結】知識點及例題知識點一:勾股定理 如果直角三角形的兩直角邊長分別為:a,b,斜邊長為c,那么a2+b2=c2.即直角三角形中兩直角邊的平方和等于斜邊的平方. 要點詮釋:(1)勾股定理揭示的是直角三角形平方關系的定理。 ?。?)勾股定理只適用于直角三角形,而不適用于銳角三角形和鈍角三角?! 。?)理解勾股
2025-06-22 04:06