【總結】《勾股定理》練習題及答案測試1勾股定理(一)學習要求掌握勾股定理的內容及證明方法,能夠熟練地運用勾股定理由已知直角三角形中的兩條邊長求出第三條邊長.課堂學習檢測一、填空題1.如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么______=c2;這一定理在我國被稱為______.2.△ABC中,∠C=90°,a、b、c分別是∠A、∠B、∠C的對邊.
2025-06-23 07:41
【總結】勾股定理分類習題(較難)一、判斷直角三角形問題:1、.滿足下列條件的△ABC,不是直角三角形的是=c2-a2∶b∶c=3∶4∶5C.∠C=∠A-∠BD.∠A∶∠B∶∠C=12∶13∶152、若一個三角形的三邊長的平方分別為:32,42,x2則此三角形是直角三角形的x2的值是 3、如果△ABC的
2025-03-24 12:59
【總結】勾股定理練習題一、基礎達標:1.下列說法正確的是( ?。゛、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2.2.Rt△ABC的三條邊長分別是、、,則下列各式成立的是( ?。〢.B. C
2025-06-22 07:15
【總結】勾股定理練習題一、基礎達標:1.下列說法正確的是( ?。゛、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2.2.Rt△ABC的三條邊長分別是、、,則下列各式成立的是( )A.B. C
2025-06-23 07:37
【總結】勾股定理練習題張頤甜一、基礎達標:1.下列說法正確的是( ?。゛、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2.2.Rt△ABC的三條邊長分別是、、,則下列各式成立的是( )A.B.
2025-06-23 07:39
【總結】正弦定理練習題1.在△ABC中,A=45°,B=60°,a=2,則b等于( )A. B.C.D.22.在△ABC中,已知a=8,B=60°,C=75°,則b等于( )A.4B.4C.4D.3.在△ABC中,a,
2025-03-25 04:59
【總結】勾股定理課時練(1)1.在直角三角形ABC中,斜邊AB=1,則AB的值是()-2-4所示,有一個形狀為直角梯形的零件ABCD,AD∥BC,斜腰DC的長為10cm,∠D=120°,則該零件另一腰AB的長是______cm(結果不取近似值).3.直角三角形兩直角邊長分別為5和12,則它斜邊上的高為_______.,猶如
2025-06-23 05:28
【總結】勾股定理一、勾股定理及證明二、勾股定理的逆定理三、勾股定理的應用一、勾股定理及證明1.【易】(初二數(shù)學下期末復習)在中,,、、分別表示、、的對邊,則下列各式中,不正確的是( ?。〢. B. C. D.【答案】D2.【易】(2010實驗初二上期中)下列說法正確的是( )A.若、、是的三邊,則B.若、、是
2025-06-28 04:49
【總結】....勾股定理課時練(1)1.在直角三角形ABC中,斜邊AB=1,則AB的值是(),AD∥BC,斜腰DC的長為10cm,∠D=120°,則該零件另一腰AB的長是______cm(結果不取近似值).3.直角三角形兩直角邊
2025-06-22 07:28
【總結】高任祿成勾股定理練習題一、基礎達標:1.下列說法正確的是( ?。゛、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a
【總結】《勾股定理》練習題測試1勾股定理(一)課堂學習檢測一、填空題1.若一個直角三角形的兩邊長分別為12和5,則此三角形的第三邊長為______.2.甲、乙兩人同時從同一地點出發(fā),已知甲往東走了4km,乙往南走了3km,此時甲、乙兩人相距______km.3.如圖,有一塊長方形花圃,有少數(shù)人為了避開拐角走“捷徑”,在花圃內走出了一條“路”,他們僅僅少走了______m路,卻
【總結】第一講分式的運算(一)、分式定義及有關題型題型一:考查分式的定義【例1】下列代數(shù)式中:,是分式的有: .題型二:考查分式有意義的條件【例2】當有何值時,下列分式有意義(1) (2) (3) (4) (5)題型三:考查分式的值為0的條件【例3】當取何值時,下列分式的值為0.(1) (2) (3)題型四:考查分式的值為正、負的條件【例4】(
2025-03-24 12:20
【總結】勾股定理課時練(1)1.在直角三角形ABC中,斜邊AB=1,則AB的值是(),AD∥BC,斜腰DC的長為10cm,∠D=120°,則該零件另一腰AB的長是______cm(結果不取近似值).3.直角三角形兩直角邊長分別為5和12,則它斜邊上的高為_______.,猶如裝有鉸鏈那樣倒向地面,旗桿頂落于離旗桿地步16,
【總結】勾股定理和勾股定理逆定理經典例題題型一:直接考查勾股定理例1在△ABC中,∠C=90°(1)已知AC=6,BC=8,求AB的長;A(2)已知AB=17,AC=15,求BC的長.BC題型二:利用勾股定理測量長度1、如果梯子的底端離建筑物9m,那么15m長的梯子可以到達建筑物的高度是多少米?DABC2、如圖
2025-03-24 13:00
2025-06-22 07:39