【總結(jié)】課堂反饋1.用反證法證明“若a⊥c,b⊥c,則a∥b”時,應(yīng)假設(shè)()A.a(chǎn)不垂直于cB.a(chǎn),b都不垂直于cC.a(chǎn)與b相交D.a(chǎn)⊥bC2.要證明命題“若a>b,則a2>b2”是假命題,下列a,
2025-06-18 00:14
2025-06-12 12:10
【總結(jié)】勾股定理的應(yīng)用(2)復習提問:1、勾股定理的內(nèi)容是什么?2、勾股定理的逆定理是什么?3、三角形的面積公式是什么?4、如何解決不規(guī)則圖形的問題?我們利用圖形的割或補得方法來解決此類問題。(2)畫出所有的以(1)中所畫線段為腰的等腰三角形.學習新知例2:如圖,已知CD=6m,
2025-06-18 04:52
【總結(jié)】第十七章勾股定理學練考數(shù)學八年級下冊R勾股定理的逆定理第2課時勾股定理的逆定理的應(yīng)用
【總結(jié)】學練考數(shù)學八年級下冊R感謝您使用本課件,歡迎您提出寶貴意見!
【總結(jié)】中國古代有一個叫《路邊苦李》的故事:王戎7歲時,與小伙伴們外出游玩,看到路邊的李樹上結(jié)滿了果子.小伙伴們紛紛去摘取果子,只有王戎站在原地不動.有人問王戎為什么?王戎回答說:“樹在道邊而多子,此必苦李.”小伙伴摘取一個嘗了一下果然是苦李.王戎是怎樣知道李子是苦的嗎?他運用了怎樣的推理方法?在證明一個命題時
2025-06-20 16:49
2025-06-12 01:47
【總結(jié)】勾股定理的應(yīng)用(1)知識回憶:cab勾股定理及其數(shù)學語言表達式:直角三角形兩直角邊a、b的平方和等于斜邊c的平方.222cba??CABcab222cba??在△ABC中,∠C=90°.(1)若b=8,c=10,則a=
2025-06-18 04:57
【總結(jié)】第一章勾股定理探索勾股定理第2課時勾股定理的驗證及簡單應(yīng)用◎新知梳理1.勾股定理的驗證:如圖甲是任意一個Rt△ABC,它的兩條直角邊的邊長分別為a,b,斜邊長為c.如圖乙、丙那樣分別取四個與Rt△ABC全等的三角形,放在邊長為(a+b)的正方形內(nèi).(1)圖乙和圖丙中①
2025-06-19 22:21
【總結(jié)】第一頁,編輯于星期六:七點五十一分。,第二頁,編輯于星期六:七點五十一分。,,第三頁,編輯于星期六:七點五十一分。,第四頁,編輯于星期六:七點五十一分。,第五頁,編輯于星期六:七點五十一分。,第六頁,...
2024-10-22 03:57
【總結(jié)】勾股定理的逆定理第十七章勾股定理導入新課講授新課當堂練習課堂小結(jié)八年級數(shù)學下(RJ)教學課件第2課時勾股定理的逆定理的應(yīng)用學習目標.(重點)題.(難點)導入新課問題前面的學習讓我們對勾股定理及其逆定理的
2025-06-17 01:48
【總結(jié)】勾股定理的應(yīng)用㈡◆如圖,在的正方形網(wǎng)格中,每個小正方形的邊長都為.⑴從點A出發(fā)的一條線段AB,使它的另一個端點落在格點(即小正方形的頂點)上,且長度為;22A.◆如圖,在的正方形網(wǎng)格中,每個小正方形的邊長都為.A.⑵以⑴中的AB為邊的一個等腰三角形ABC,使點C在格點上,且另
2025-06-17 16:58
【總結(jié)】勾股定理第2課時勾股定理的實際應(yīng)用第2課時勾股定理的實際應(yīng)用知識目標1.在理解直角三角形三邊關(guān)系的基礎(chǔ)上,通過對實際問題的分析,能用勾股定理解決與直角三角形三邊有關(guān)的實際問題.2.利用勾股定理,結(jié)合“兩點之間,線段最短”,會求平面上兩點之間的最短距離.3.在掌握立體圖形展開圖的前提下,利用勾股定理求立體圖