【總結】余弦定理及其應用【教學目標】【知識與技能目標】(1)了解并掌握余弦定理及其推導過程.(2)會利用余弦定理來求解簡單的斜三角形中有關邊、角方面的問題.(3)能利用計算器進行簡單的計算(反三角).【過程與能力目標】(1)用向量的方法證明余弦定理,不僅可以體現(xiàn)向量的工具性,更能加深對向量知識應用的認識.(2)通過引導、啟發(fā)、誘導學生發(fā)現(xiàn)并且順利推導出余弦定理的過程,
2025-06-19 00:57
【總結】§動能定理及其應用知識精要一?動能:物體由于運動而具有的能量叫做動能.:.:焦耳(J),1J=1N·m=1kg·m2/s2.標量,只有正值,沒有負值.,也具有相對性,因為v為瞬時速度,且與參考系的選擇有關,一般以地
2024-11-09 01:51
【總結】第四節(jié)一、隱函數(shù)的導數(shù)二、由參數(shù)方程確定的函數(shù)的導數(shù)機動目錄上頁下頁返回結束隱函數(shù)和參數(shù)方程求導第二章一、隱函數(shù)的導數(shù)若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)可確定y是x的函數(shù),
2024-08-02 09:56
【總結】第四節(jié)一、隱函數(shù)的導數(shù)二、由參數(shù)方程確定的函數(shù)的導數(shù)三、相關變化率機動目錄上頁下頁返回結束隱函數(shù)和參數(shù)方程求導相關變化率第二章一、隱函數(shù)的導數(shù)若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)
2024-08-02 12:21
【總結】第四節(jié)一、隱函數(shù)的導數(shù)二、由參數(shù)方程確定的函數(shù)的導數(shù)三、相關變化率隱函數(shù)和參數(shù)方程求導相關變化率第二章一、隱函數(shù)的導數(shù)若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)可確定y是x的函數(shù),但此隱函數(shù)不能顯化.
【總結】2022/8/21阜師院數(shù)科院第四節(jié)一、隱函數(shù)的導數(shù)二、由參數(shù)方程確定的函數(shù)的導數(shù)三、相關變化率機動目錄上頁下頁返回結束隱函數(shù)和參數(shù)方程求導相關變化率第二章2022/8/21阜師院數(shù)科院一、隱函數(shù)的導數(shù)若由方程可確定y是x的函數(shù)
2024-08-02 16:36
【總結】第四節(jié)一、隱函數(shù)的導數(shù)二、由參數(shù)方程確定的函數(shù)的導數(shù)機動目錄上頁下頁返回結束隱函數(shù)的導數(shù)和由參數(shù)方程確定的函數(shù)的導數(shù)第二章一、隱函數(shù)的導數(shù)若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)可確定y是
2024-08-02 09:55
【總結】§隱函數(shù)與參量函數(shù)微分法一、隱函數(shù)的導數(shù)定義:由方程F(x,y)=0所確定的函數(shù)y=y(x)稱為隱函數(shù).y=f(x)形式的函數(shù)稱為顯函數(shù).如果從F(x,y)=0中解得y=f(x),稱為隱函數(shù)的顯化.問題:隱函數(shù)不易顯化或不能顯化如何求導?例1:求由方程xy–e
2024-08-02 17:10
【總結】§高階導數(shù)、高階偏導數(shù)一、高階導數(shù)二、高階偏導數(shù)一、高階導數(shù)的定義問題:變速直線運動的加速度.),(tfs?設)()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(0處的二階導
2025-05-07 12:10
【總結】復習:冪函數(shù)的概念討論冪函數(shù)的性質(zhì):函數(shù)y=xα(α是常數(shù))叫做冪函數(shù)冪函數(shù)由于指數(shù)α的不同,它們的定義域也不同,性質(zhì)(有界性、單調(diào)性、奇偶性、周期性)也不同。主要分α0和α0兩大類情況去討論它們的定義域、單調(diào)性、奇偶性。定義:
2024-11-17 22:48
【總結】隱函數(shù)與參量函數(shù)微分法一、隱函數(shù)的導數(shù)定義:隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導?隱函數(shù)求導法則:用復合函數(shù)求導法則直接對方程兩邊求導.兩邊對x求導,當遇到y(tǒng)的函數(shù)f(y)時將求出的這些導數(shù)代入得到關于的代數(shù)方程,至于隱函數(shù)求二階導數(shù),與上同理例1解解得
2024-08-13 07:43
2024-08-02 16:17
2024-08-02 15:26
【總結】第四節(jié)一、隱函數(shù)的導數(shù)二、由參數(shù)方程確定的函數(shù)的導數(shù)三、相關變化率機動目錄上頁下頁返回結束隱函數(shù)和參數(shù)方程求導相關變化率第二章一、隱函數(shù)的導數(shù)若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)可確定y是x的函
2024-08-02 12:14
【總結】高等院校非數(shù)學類本科數(shù)學課程大學數(shù)學(三)多元微積分學第一章多元函數(shù)微分學曾金平教案編寫:劉楚中曾金平電子制作:劉楚中第一章多元函數(shù)微分學本章學習要求:1.理解多元函數(shù)的概念。熟悉多元函數(shù)的“點函數(shù)”表示法。2.知道二元函數(shù)的極限、連續(xù)性等概念,以及有界閉域上連續(xù)函數(shù)的性質(zhì)。
2024-08-02 02:19