【總結(jié)】第14章勾股定理14.2勾股定理的應(yīng)用第1課時(shí)勾股定理在生活中的應(yīng)用目標(biāo)突破總結(jié)反思第14章勾股定理知識(shí)目標(biāo)勾股定理的應(yīng)用知識(shí)目標(biāo)1.經(jīng)過觀察、操作、討論、發(fā)現(xiàn),歸納理解立體圖形表面最短路徑問題的求解思路.2.在理解勾股定理及其逆定理的基礎(chǔ)上,通過分析、探究,能夠?qū)⑵渌麑?shí)際問
2025-06-18 00:11
【總結(jié)】◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)
2025-06-17 23:29
2025-06-13 14:20
【總結(jié)】第十七章勾股定理學(xué)練考數(shù)學(xué)八年級(jí)下冊(cè)R勾股定理的逆定理第2課時(shí)勾股定理的逆定理的應(yīng)用
2025-06-12 12:10
【總結(jié)】第一章勾股定理1探索勾股定理第2課時(shí)驗(yàn)證勾股定理及其簡(jiǎn)單應(yīng)用第一章勾股定理A知識(shí)要點(diǎn)分類練B規(guī)律方法綜合練C拓廣探究創(chuàng)新練1.已知:如圖1-1-7,用四塊兩直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c的直角三角形拼成一個(gè)正方形,求圖形中央的小正方形的面積.解法(1)
2025-06-19 12:14
2025-06-15 07:22
2025-06-17 04:01
【總結(jié)】第一章勾股定理探索勾股定理第2課時(shí)勾股定理的驗(yàn)證及簡(jiǎn)單應(yīng)用◎新知梳理1.勾股定理的驗(yàn)證:如圖甲是任意一個(gè)Rt△ABC,它的兩條直角邊的邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c.如圖乙、丙那樣分別取四個(gè)與Rt△ABC全等的三角形,放在邊長(zhǎng)為(a+b)的正方形內(nèi).(1)圖乙和圖丙中①
2025-06-19 22:21
【總結(jié)】第14章勾股定理勾股定理直角三角形三邊的關(guān)系第1課時(shí)探索直角三角形三邊的關(guān)系1.勾股定理用語(yǔ)言敘述:直角三角形的平方和等于的平方.用字母表示:如果直角三角形的兩直角邊分別為a、b,斜邊為c,則.2.在我國(guó)古代把直角三角形較短的直角邊稱為
2025-06-21 05:34
【總結(jié)】學(xué)練考數(shù)學(xué)八年級(jí)下冊(cè)R感謝您使用本課件,歡迎您提出寶貴意見!
【總結(jié)】第14章勾股定理微專題6勾股定理及其逆定理的綜合應(yīng)用專題解讀勾股定理及其逆定理揭示了直角三角形的三邊的數(shù)量關(guān)系,在實(shí)際生活中應(yīng)用廣泛,在解題時(shí)注意將實(shí)際問題轉(zhuǎn)化為直角三角形問題,利用勾股定理解決.專題訓(xùn)練類型1勾股定理與格點(diǎn)多邊形1.如圖,在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,請(qǐng)按要
2025-06-17 07:30
2025-06-15 06:55
【總結(jié)】課堂反饋1.用反證法證明“若a⊥c,b⊥c,則a∥b”時(shí),應(yīng)假設(shè)()A.a(chǎn)不垂直于cB.a(chǎn),b都不垂直于cC.a(chǎn)與b相交D.a(chǎn)⊥bC2.要證明命題“若a>b,則a2>b2”是假命題,下列a,
2025-06-18 00:14
2025-06-19 01:24