【總結(jié)】第2章推理與證明2.1合情推理與演繹推理2.合情推理【課標(biāo)要求】1.了解合情推理的含義,能利用歸納和類比等進(jìn)行簡(jiǎn)單的推理.2.了解合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用.【核心掃描】1.利用歸納和類比等進(jìn)行簡(jiǎn)單的推理.(重點(diǎn)、難點(diǎn))2.合情推理的含義.(難點(diǎn))
2024-11-18 08:56
【總結(jié)】間接證明【課標(biāo)要求】1.了解間接證明的一種方法——反證法.2.了解反證法的思考過(guò)程、特點(diǎn).【核心掃描】用反證法證明問(wèn)題.(重點(diǎn)、難點(diǎn))自學(xué)導(dǎo)引1.間接證明不是直接從原命題的條件逐步推得命題成立,這種的方法通常稱為間接證明.就是一種常用的間接證
2024-11-17 23:34
【總結(jié)】其初步應(yīng)用比《數(shù)學(xué)3》中“回歸”增加的內(nèi)容數(shù)學(xué)3——統(tǒng)計(jì)1.畫(huà)散點(diǎn)圖2.了解最小二乘法的思想3.求回歸直線方程y=bx+a4.用回歸直線方程解決應(yīng)用問(wèn)題選修2-3——統(tǒng)計(jì)案例5.引入線性回歸模型y=bx+a+e6.了解模型中隨機(jī)誤差項(xiàng)e產(chǎn)生的
2024-11-17 15:20
【總結(jié)】1.微積分基本定理一、基礎(chǔ)過(guò)關(guān)1.若F′(x)=x2,則F(x)的解析式正確的是______.①F(x)=13x3②F(x)=x3③F(x)=13x3+1④F(x)=13x3+c(c為常數(shù))2.設(shè)f(x)=?????x+1?x≤1?,12x2?x1?,則?
2024-12-05 06:24
【總結(jié)】§導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用一、基礎(chǔ)過(guò)關(guān)1.煉油廠某分廠將原油精煉為汽油,需對(duì)原油進(jìn)行冷卻和加熱,如果第x小時(shí),原油溫度(單位:℃)為f(x)=13x3-x2+8(0≤x≤5),那么,原油溫度的瞬時(shí)變化率的最小值是________.2.設(shè)底為等邊三角形的直三棱柱的體積為V,那么其表面積最小時(shí)底面邊長(zhǎng)為_(kāi)
【總結(jié)】1e2eaPOA'P'B'C'BAC間向量的基本定理教學(xué)目標(biāo)1.掌握及其推論,理解空間任意一個(gè)向量可以用不共面的三個(gè)已知向量線性表示,而且這種表示是唯一的;2.在簡(jiǎn)單問(wèn)題中,會(huì)選擇適當(dāng)?shù)幕讈?lái)表示任一空間向量。
2024-11-20 00:30
【總結(jié)】§導(dǎo)數(shù)的運(yùn)算§常見(jiàn)函數(shù)的導(dǎo)數(shù)目的要求:(1)了解求函數(shù)的導(dǎo)數(shù)的流程圖,會(huì)求函數(shù)的導(dǎo)函數(shù)(2)掌握基本初等函數(shù)的運(yùn)算法則教學(xué)內(nèi)容一.回顧函數(shù)在某點(diǎn)處的導(dǎo)數(shù)、導(dǎo)函數(shù)思考:求函數(shù)導(dǎo)函數(shù)的流程圖新授;求下列函數(shù)的導(dǎo)數(shù)(1)ykx
2024-11-20 00:29
【總結(jié)】曲線與方程課題第1課時(shí)計(jì)劃上課日期:教學(xué)目標(biāo)知識(shí)與技能(1)了解曲線上的點(diǎn)與方程的解之間的一一對(duì)應(yīng)關(guān)系;(2)初步領(lǐng)會(huì)“曲線的方程”與“方程的曲線”的概念;[(3)學(xué)會(huì)根據(jù)已有的情景資料找規(guī)律,進(jìn)而分析、判斷、歸納結(jié)論;(4)強(qiáng)化“形”與“數(shù)”一致并相互轉(zhuǎn)化的思
【總結(jié)】§組合(二)一、基礎(chǔ)過(guò)關(guān)1.若C7n+1-C7n=C8n,則n=________.2.C03+C14+C25+C36+…+C1720的值為_(kāi)_______.(用組合數(shù)表示)3.5本不同的書(shū)全部分給4名學(xué)生,每名學(xué)生至少一本,不同的分法種數(shù)為_(kāi)_______.4.某施工小組有男工7人
2024-12-08 20:17
【總結(jié)】第3章統(tǒng)計(jì)案例§獨(dú)立性檢驗(yàn)一、基礎(chǔ)過(guò)關(guān)1.當(dāng)χ2時(shí),就有________的把握認(rèn)為“x與y有關(guān)系”.2.在某醫(yī)院,因?yàn)榛夹呐K病而住院的665名男性病人中,有214人禿頂;而另外772名不是因?yàn)榛夹呐K病而住院的男性病人中有175人禿頂,則χ2≈__________.(結(jié)
【總結(jié)】2.推理案例賞析一、基礎(chǔ)過(guò)關(guān)1.有兩種花色的正六邊形地板磚,按下面的規(guī)律拼成若干個(gè)圖案,則第6個(gè)圖案中有底紋的正六邊形的個(gè)數(shù)是________.2.觀察下列不等式:112,1+12+131,1+12+13+…+1732,1+12+13+…+1152,1+12+13+
2024-12-08 20:18
【總結(jié)】§排列(二)一、基礎(chǔ)過(guò)關(guān)1.把4個(gè)不同的黑球,4個(gè)不同的紅球排成一排,要求黑球、紅球分別在一起,不同的排法種數(shù)是________.2.6個(gè)停車位置,有3輛汽車需要停放,若要使3個(gè)空位連在一起,則停放的方法總數(shù)為_(kāi)_______.3.某省有關(guān)部門從6人中選4人分別到A、B、C
【總結(jié)】§隨機(jī)變量的均值和方差離散型隨機(jī)變量的均值一、基礎(chǔ)過(guò)關(guān)1.若隨機(jī)變量X的概率分布如下表所示,已知E(X)=,則a-b=________.X0123Pabξ~B????n,12,η~B????n,13,且E(ξ)=15,則E(η)=________.3.籃球運(yùn)
2024-12-09 03:38
【總結(jié)】離散型隨機(jī)變量的方差與標(biāo)準(zhǔn)差一、基礎(chǔ)過(guò)關(guān)1.下列說(shuō)法中,正確的是________.(填序號(hào))①離散型隨機(jī)變量的均值E(X)反映了X取值的概率平均值;②離散型隨機(jī)變量的方差V(X)反映了X取值的平均水平;③離散型隨機(jī)變量的均值E(X)反映了X取值的平均水平;④離散型隨機(jī)變量的方差V(X)反映了X
【總結(jié)】§直接證明與間接證明2.直接證明一、基礎(chǔ)過(guò)關(guān)1.已知a,b,c∈R,那么下列命題中正確的是________.①若ab,則ac2bc2②若acbc,則ab③若a3b3且ab1b④若a2b2且ab0,
2024-12-08 07:02