freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

專題十:參數(shù)的取值問題的題型及方法(編輯修改稿)

2025-07-04 13:53 本頁面
 

【文章內(nèi)容簡介】 達(dá)定理以及根與系數(shù)的分布知識(shí)求解.4oxy例8.關(guān)于的方程恒有解,求的范圍.分析:題目中出現(xiàn)了及,故可通過換元轉(zhuǎn)化成二次函數(shù)型求解.解法1(利用韋達(dá)定理):設(shè),則t。 即解得.解法2(利用根與系數(shù)的分布知識(shí)):4oxy即要求有正根,設(shè).10.,即,∴或.時(shí),得,不合題意;時(shí),得,符合題意。∴.20. ,即或時(shí),∵,故只需對(duì)稱軸,即.∴,綜合可得.三、求參數(shù)的取值范圍在解析幾何中的應(yīng)用解析幾何中確定參變量的取值范圍歷來是各級(jí)各類測(cè)試及高考命題的熱點(diǎn)。由于此類問題綜合性強(qiáng),且確定參變量取值范圍的不等量關(guān)系也較為隱蔽,因而給解題帶來了諸多困難。為此,我們有必要總結(jié)和歸納如何尋找或挖掘不等量關(guān)系的策略和方法.在幾何問題中,有些問題和參數(shù)無關(guān),這就構(gòu)成定值問題,解決這些問題常通過取參數(shù)和特殊值來確定“定值”是多少,或者將該問題涉及的幾何式轉(zhuǎn)化為代數(shù)式或三角式來證明該式是恒定的.解析幾何中的最值問題,一般先根據(jù)條件列出所求目標(biāo)——函數(shù)關(guān)系式,然后根據(jù)函數(shù)關(guān)系式手特征選用參數(shù)法,配方法,判別式法,應(yīng)用不等式的性質(zhì),以及三角函數(shù)最值法等求出它的最大值或最小值.充分運(yùn)用各種方法學(xué)會(huì)解圓錐曲線的綜合問題(解析法的應(yīng)用,數(shù)形結(jié)合的數(shù)學(xué)思想,圓錐曲線與圓錐曲線的位置關(guān)系,與圓錐曲線相關(guān)的定值問題,最值問題,應(yīng)用問題和探索性問題).研究最值問題是實(shí)踐的需要,人類在實(shí)踐活動(dòng)中往往追求最佳結(jié)果,抽象化之成為數(shù)學(xué)上的最值問題,所以最值問題幾乎滲透到數(shù)學(xué)的每一章.解析幾何中的最值問題主要是曲線上的點(diǎn)到定點(diǎn)的距離最值,到定直線的距離最值,還有面積最值,斜率最值等,解決的辦法也往往是數(shù)形結(jié)合或轉(zhuǎn)化為函數(shù)最值.而一些函數(shù)最值,反而可以通過數(shù)形結(jié)合轉(zhuǎn)化為解析幾何中的最值問題.1.幾何法:若題目的條件和結(jié)論能明顯體現(xiàn)幾何特征及意義,則考慮利用圖形性質(zhì)來解決。2.代數(shù)法:若題目的條件和結(jié)論能體現(xiàn)一種明確的函數(shù)關(guān)系,則可首先建立目標(biāo)函數(shù),再求這個(gè)函數(shù)的最值。求函數(shù)最值常用的方法有配方法、判別式法、重要不等式法、三角函數(shù)的值域法、函數(shù)的單調(diào)性法.例9. 已知橢圓:和點(diǎn),過作直線交橢圓于、兩點(diǎn),在線段上取點(diǎn),使,求動(dòng)點(diǎn)的軌跡所在曲線的方程及點(diǎn)的橫坐標(biāo)的取值范圍.分析:這是一個(gè)軌跡問題,解題困難在于多動(dòng)點(diǎn)的困擾,學(xué)生往往不知從何入手。其實(shí),應(yīng)該想到軌跡問題可以通過參數(shù)法求解. 因此,首先是選定參數(shù),然后想方設(shè)法將點(diǎn)Q的橫、縱坐標(biāo)用參數(shù)表達(dá),最后通過消參可達(dá)到解題的目的.由于點(diǎn)的變化是由直線的變化引起的,自然可選擇直線的斜率作為參數(shù),如何將,與聯(lián)系起來?一方面利用點(diǎn)在直線上;另一方面就是運(yùn)用題目條件: 將直線方程代入橢圓方程,消去y,利用韋達(dá)定理利用點(diǎn)Q滿足直線AB的方程:y = k (x—4)+1,消去參數(shù)k點(diǎn)Q的軌跡
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1