【總結(jié)】復(fù)合函數(shù)單調(diào)性的判斷增↗減↘增↗減↘增↗減↘增↗減↘減↘增↗以上規(guī)律還可總結(jié)為:“同向得增,異向得減”或“同增異減”.1求函數(shù)y=(4x-x2)的單調(diào)區(qū)間.2、求函數(shù)的單調(diào)性及最值(-∞,0)上為增函數(shù)的是A.B.=-(x+1)2
2025-06-25 19:48
【總結(jié)】函數(shù)的單調(diào)性與導(dǎo)數(shù)???教學(xué)內(nèi)容:人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)》選修1-1P97—101?教學(xué)目標(biāo):(1)知識目標(biāo):能探索并應(yīng)用函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系求單調(diào)區(qū)間,能由導(dǎo)數(shù)信息繪制函數(shù)大致圖象。?(2)能力目標(biāo):培養(yǎng)學(xué)生的觀察能力、歸納能力,增強(qiáng)數(shù)形結(jié)合的思維意識。
2025-05-16 02:09
【總結(jié)】函數(shù)的單調(diào)性(一)f(x)=x3xy0f(x)=-xxy0xy0f(x)=x2圖1圖2圖3觀察下面三個(gè)函數(shù)圖象的變化特點(diǎn)。y=x31-18......-121顯然有在R上任意取兩個(gè)值x1、x2當(dāng)x1x
2024-11-06 20:13
【總結(jié)】函數(shù)的單調(diào)性教學(xué)設(shè)計(jì)教學(xué)目標(biāo)1.使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法.2.通過對函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語言表達(dá)能力;通過對函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力.3.通過知識的探究過程培養(yǎng)學(xué)生細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)論證的良好思維習(xí)慣。教學(xué)重
2025-04-16 23:39
【總結(jié)】中國教育考試培訓(xùn)第二門戶!課題:函數(shù)的單調(diào)性教材:人教版全日制普通高級中學(xué)教科書(必修)數(shù)學(xué)第一冊(上)授課教師:北京景山學(xué)校許云堯【教學(xué)目標(biāo)】1.使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和定義判斷、證明函數(shù)單調(diào)性的方法.2.通過對函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合的思想方法,培養(yǎng)學(xué)生觀察、歸納
2025-05-16 01:41
【總結(jié)】課題:函數(shù)的單調(diào)性(二)復(fù)合函數(shù)單調(diào)性北京二十二中劉青教學(xué)目標(biāo)...教學(xué)重點(diǎn)與難點(diǎn)..教學(xué)過程設(shè)計(jì)師:這節(jié)課我們將講復(fù)合函數(shù)的單調(diào)區(qū)間,下面我們先復(fù)習(xí)一下復(fù)合函數(shù)的定義.生:設(shè)y=f(u)的定義域?yàn)锳,u=g(x)的值域?yàn)锽,若AíB,則y關(guān)于x函數(shù)的y=f[g(x)]叫做函數(shù)f與g的復(fù)合函數(shù),u叫中間量.師:.(教師把
2025-06-27 00:35
【總結(jié)】重慶市萬州高級中學(xué)曾國榮2020年12月13日星期日重慶市萬州高級中學(xué)曾國榮§高2020級數(shù)學(xué)教學(xué)課件函數(shù)的單調(diào)性:如果對于屬于定義域內(nèi)某個(gè)區(qū)間的任意兩個(gè)自變量的值x1,x2,當(dāng)x1x2時(shí),都有f(x1)f(x2),那么就說f(x
2024-11-07 00:42
【總結(jié)】第一篇:函數(shù)的單調(diào)性證明 函數(shù)的單調(diào)性證明 一.解答題(共40小題) 1.證明:函數(shù)f(x)=在(﹣∞,0)上是減函數(shù). 2.求證:函數(shù)f(x)=4x+在(0,)上遞減,在[,+∞)上遞增. ...
2024-11-04 01:37
【總結(jié)】第一篇:函數(shù)的單調(diào)性教案 函數(shù)的單調(diào)性 教學(xué)目標(biāo) 知識目標(biāo):初步理解增函數(shù)、減函數(shù)、函數(shù)的單調(diào)性、單調(diào)區(qū)間的概念,并掌握判斷一些簡單函數(shù)單調(diào)性的方法。 能力目標(biāo):啟發(fā)學(xué)生能夠發(fā)現(xiàn)問題和提出問題...
2024-10-30 22:00
【總結(jié)】學(xué)校樂從中學(xué)年級高二學(xué)科數(shù)學(xué)導(dǎo)學(xué)案主備審核授課人授課時(shí)間班級姓名小組課題:函數(shù)的單調(diào)性及最值課型:復(fù)習(xí)課課時(shí):一【學(xué)習(xí)目標(biāo)】理解函數(shù)的單調(diào)性、最大(小)值及其幾何意義【學(xué)習(xí)過程】一、知識要點(diǎn)
【總結(jié)】函數(shù)的單調(diào)性(三)觀察某市一天24小時(shí)內(nèi)的氣溫變化圖,全天最高氣溫是在何時(shí)?即x∈[0,24],f(x)≤f(14)=9概念:一般地,設(shè)y=f(x)的定義域?yàn)锳.若存在定值x0∈A,使得對于任意x∈A,有f(x)≤f(x0)恒成立,則稱f(x0)為y=f(
2024-08-24 20:29
【總結(jié)】含參數(shù)函數(shù)單調(diào)性●基礎(chǔ)知識總結(jié)和邏輯關(guān)系一、函數(shù)的單調(diào)性求可導(dǎo)函數(shù)單調(diào)區(qū)間的一般步驟和方法:1)確定函數(shù)的的定義區(qū)間;2)求,令,解此方程,求出它在定義區(qū)間內(nèi)的一切實(shí)根;3)把函數(shù)的無定義點(diǎn)的橫坐標(biāo)和上面的各實(shí)數(shù)根按由小到大的順序排列起來,然后用這些點(diǎn)把函數(shù)的定義區(qū)間分成若干個(gè)小區(qū)間;4)確定在各個(gè)區(qū)間內(nèi)的符號,由的符號判定函數(shù)在每個(gè)相應(yīng)小
2025-05-16 08:05
【總結(jié)】第一篇:含參函數(shù)單調(diào)性 含參數(shù)函數(shù)單調(diào)性●基礎(chǔ)知識總結(jié)和邏輯關(guān)系 一、函數(shù)的單調(diào)性 求可導(dǎo)函數(shù)單調(diào)區(qū)間的一般步驟和方法:1)確定函數(shù)的f(x)的定義區(qū)間; 2)求f'(x),令f'(x)=0,...
2024-11-04 02:40
【總結(jié)】第一篇:函數(shù)單調(diào)性教學(xué)設(shè)計(jì) 函數(shù)單調(diào)性教學(xué)設(shè)計(jì) 關(guān)于函數(shù)的單調(diào)性習(xí)題課教學(xué)設(shè)計(jì),本人在聽了專家的講解后感到受益匪淺,結(jié)合平時(shí)的教學(xué),有些教學(xué)方面的心得如下,希望專家和同行批評指正。 本節(jié)課是高中...
2024-11-04 01:21
【總結(jié)】第一篇:函數(shù)的單調(diào)性反思 函數(shù)的單調(diào)性反思 積分學(xué)、微分方程乃至泛函分析等高等學(xué)校開設(shè)的數(shù)學(xué)基礎(chǔ)課程,無一不是以函數(shù)作為基本函數(shù)的單調(diào)性是函數(shù)眾多性質(zhì)中的重要性質(zhì)之一,函數(shù)的單調(diào)性一節(jié)中的知識是今...
2024-11-04 01:41