【總結(jié)】復(fù)合函數(shù)單調(diào)性的判斷增↗減↘增↗減↘增↗減↘增↗減↘減↘增↗以上規(guī)律還可總結(jié)為:“同向得增,異向得減”或“同增異減”.1求函數(shù)y=(4x-x2)的單調(diào)區(qū)間.2、求函數(shù)的單調(diào)性及最值(-∞,0)上為增函數(shù)的是A.B.=-(x+1)2
2025-06-25 19:48
【總結(jié)】方程的根和函數(shù)的零點(diǎn)XYAMBO10m(1,40/3)(0,10)?思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關(guān)系?方程x2-2x+1=0
2024-11-19 13:12
【總結(jié)】復(fù)合函數(shù)圖像研究零點(diǎn)例1、求方程實(shí)數(shù)解的個(gè)數(shù)為個(gè)。例2、已知函數(shù)則下列關(guān)于函數(shù)的零點(diǎn)個(gè)數(shù)的判斷正確的是()A.當(dāng)時(shí),有3個(gè)零點(diǎn);當(dāng)時(shí),有2個(gè)零點(diǎn)B.當(dāng)時(shí),有4個(gè)零點(diǎn);當(dāng)時(shí),有1個(gè)零點(diǎn)C.無(wú)論為何值,均有2個(gè)零點(diǎn)D.無(wú)論為何值,均有4個(gè)零點(diǎn)例3、已知函數(shù)f(x)=,若關(guān)于x的方程f2(x)-bf(x)+c
2025-03-25 00:18
【總結(jié)】教你如何化整為零破難題教你如何規(guī)范解答不失分教你如何易錯(cuò)警示要牢記壓軸大題巧突破壓軸大題巧突破(四)利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)或方程的根[典例](2022·山東高考)(13分)設(shè)函數(shù)+c(e=28…是自然對(duì)數(shù)的底數(shù),c∈R).
2025-08-05 03:43
【總結(jié)】中國(guó)領(lǐng)先的中小學(xué)教育品牌精銳教育學(xué)科教師輔導(dǎo)講義講義編號(hào)11sh11sx00學(xué)員編號(hào):年級(jí):高二課時(shí)數(shù):3學(xué)員姓名:輔導(dǎo)科目:
2025-08-17 08:40
【總結(jié)】復(fù)合函數(shù)的導(dǎo)數(shù)練習(xí)題一、選擇題=的導(dǎo)數(shù)是A.B.C.-D.-=sin3(3x+)的導(dǎo)數(shù)為(3x+)cos(3x+)(3x+)cos(3x+)(3x+)D.-9sin2(3x+)cos(3x+)=cos(sinx)的導(dǎo)數(shù)為A.-[sin(si
【總結(jié)】一、復(fù)習(xí)與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義...y=(3x-2)2的導(dǎo)數(shù),那么我們可以把平方式展開(kāi),利用導(dǎo)數(shù)的四則運(yùn)算法則求導(dǎo).然后能否用其它的辦法求導(dǎo)呢?又如我們知道函數(shù)y=1/x2的導(dǎo)數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導(dǎo)數(shù)又是什么呢?y?為了解決上面的問(wèn)題
2025-04-28 23:00
【總結(jié)】基本初等函數(shù)的導(dǎo)數(shù)公式1.2.()3.4.5.ln6.7.8.nRa?'n'n-1''x'xx'x'a'若f(x)=c,則f(x)=0若f(x)=x,則f(x)=nx
2024-11-03 19:25
【總結(jié)】舊知回顧:高考中考查函數(shù)的定義域的題目多以選擇題或填空題的形式出現(xiàn),有時(shí)也出現(xiàn)在大題中作為其中一問(wèn)。以考查對(duì)數(shù)和根號(hào)兩個(gè)知識(shí)點(diǎn)居多。指函數(shù)式中自變量的取值范圍。(已知函數(shù)的解析式,若未加特殊說(shuō)明,則定義
2024-11-06 14:17
【總結(jié)】個(gè)性化教學(xué)輔導(dǎo)教案教案課題函數(shù)的單調(diào)性教師姓名學(xué)生姓名××××上課日期學(xué)科數(shù)學(xué)適用年級(jí)高一教材版本人教版A學(xué)習(xí)目標(biāo)1.掌握用定義法求函數(shù)的單調(diào)性2.掌握函數(shù)最值的求法重難點(diǎn)重點(diǎn):函數(shù)的單調(diào)性及其幾何意義,函數(shù)的最大(?。┲导捌鋷缀我饬x.難點(diǎn):利用函數(shù)的單調(diào)性定義
2025-06-30 19:52
【總結(jié)】復(fù)合函數(shù)概念精析藍(lán)田縣洩湖中學(xué)王錦鋒復(fù)合函數(shù)概念精析復(fù)合函數(shù)是中學(xué)數(shù)學(xué)深化函數(shù)概念,提高運(yùn)用函數(shù)思想解決數(shù)學(xué)問(wèn)題能力的重要工具,是進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)的重要基礎(chǔ),也是歷屆高考??疾凰サ臒狳c(diǎn)。但高中數(shù)學(xué)教材未作介紹,而其他教輔材料上也僅給出描述性的非嚴(yán)格定義,因此,高一數(shù)學(xué)教學(xué)與高考數(shù)學(xué)復(fù)習(xí)中介紹有關(guān)
2025-06-27 00:15
【總結(jié)】《簡(jiǎn)單復(fù)合函數(shù)的導(dǎo)數(shù)》同步檢測(cè)一、基礎(chǔ)過(guò)關(guān)1.下列函數(shù)是復(fù)合函數(shù)的是________.(填序號(hào))①y=-x3-1x+1②y=cos(x+π4)③y=1lnx④y=(2x+3)4[來(lái)源^&:*@中教網(wǎng)%]2.函數(shù)y=1?3x-1?2的導(dǎo)數(shù)y′=________.[來(lái)源:學(xué)科網(wǎng)ZXX
2024-12-07 20:50
【總結(jié)】復(fù)合函數(shù)、抽象函數(shù)、函數(shù)的圖像一、復(fù)合函數(shù)設(shè)y=f(u),uB,u=g(x),xA,通過(guò)變量u,得到y(tǒng)關(guān)于x的函數(shù),那么稱(chēng)這個(gè)函數(shù)為函數(shù)y=f(u)和u=g(x)的復(fù)合函數(shù),記作y=f(g(x)),其中y=f(u)叫做外函數(shù),u=g(x)叫做內(nèi)函數(shù),u稱(chēng)為中間變量,它的取值范圍是g(x)的值域的子集。1、復(fù)合函數(shù)的定義域:要看清是已知f(x)的定義域求f[g(x)]的定義域,
2025-04-17 13:06
【總結(jié)】二次方程根的分布與二次函數(shù)在閉區(qū)間上的最值歸納1、一元二次方程根的分布情況設(shè)方程的不等兩根為且,相應(yīng)的二次函數(shù)為,方程的根即為二次函數(shù)圖象與軸的交點(diǎn),它們的分布情況見(jiàn)下面各表(每種情況對(duì)應(yīng)的均是充要條件)表一:(兩根與0的大小比較即根的正負(fù)情況)分布情況兩個(gè)負(fù)根即兩根都小于0兩個(gè)正根即兩根都大于0一正根一負(fù)根即一個(gè)根小于0,一個(gè)大于0大致圖象()
2025-04-04 04:24
【總結(jié)】配湊法就是在中把關(guān)于變量的表達(dá)式先湊成整體的表達(dá)式,再直接把換成而得。f(x-)=x2+,函數(shù)f(x)的解析式換元法就是先設(shè),從中解出(即用表示),再把(關(guān)于的式子)直接代入中消去得到,最后把中的直接換成即得,這種代換遵循了同一函數(shù)的原則。f(x+1)=x2+x,函數(shù)f(x)的解析式:復(fù)合函數(shù)的定義域復(fù)合函數(shù)的定義一般地:若,又,且值域與定義域的交
2025-06-24 15:21