freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

人教版高一數(shù)學(xué)函數(shù)(編輯修改稿)

2025-05-04 02:12 本頁面
 

【文章內(nèi)容簡介】 。易知是不等式,即的解。比較系數(shù),得。例13 求下列函數(shù)的值域:(1) (2) (3) (4) 解 (1)因?yàn)?,所以值域?yàn)椤? (2)因?yàn)?,所以值域?yàn)?。? 此題容易誤解為。 (3)因?yàn)椋?,所以值域?yàn)椤? (4)令,則,從而。因?yàn)椋?。于是,故值域?yàn)?。?4 已知是的二次函數(shù),且,求。解 設(shè),則有。所以又,比較系數(shù),得,所以所求函數(shù)為。例15 已知,且,求。解 令,代入,得。又,所以。函數(shù)單調(diào)性例1 下列函數(shù)中,屬于增函數(shù)的是 [ ]A、 B、 C、 D、解 D例2 若一次函數(shù)在上是單調(diào)遞減函數(shù),則點(diǎn)在直角坐標(biāo)平面的 [ ]A、上半平面B、下半平面 C、左半平面D、右半平面解 C 因?yàn)?。? 函數(shù)在區(qū)間上是減函數(shù),則實(shí)數(shù)a的取值范圍是 [ ]A、 B、 C、 D、解 B 因拋物線開口向上,對稱軸方程為,所以,即。例4 已知,如果,那么 [ ]A、在區(qū)間(1,0)內(nèi)是減函數(shù) B、在區(qū)間(0,1)內(nèi)是減函數(shù)C、在區(qū)間(2,0)內(nèi)是增函數(shù) D、在區(qū)間(0,2)內(nèi)是增函數(shù)解 A 。畫出草圖可知在(1,0)上是減函數(shù)。例5 若在上都是減函數(shù),則在(0,+∞)上是______函數(shù)(選填“增”或“減”)。解 減函數(shù) 由條件知,所以。例6 函數(shù)的單調(diào)遞增區(qū)間是 。解 [2,1]已知函數(shù)的定義域是。設(shè),可知當(dāng)時,隨增大時,也增大但值減?。划?dāng)時,隨增大時,減小,但值增大,此時是的單調(diào)增函數(shù),即時,是增函數(shù)。注 在求函數(shù)單調(diào)區(qū)間時,應(yīng)先求函數(shù)的定義域。例7 在定義域上是單調(diào)遞增函數(shù),且,那么在同一定義域上,是單調(diào) 函數(shù);是單調(diào) 函數(shù);y=[f(x)]2是單調(diào)______函數(shù)。解 遞減;遞減;遞增。例8 已知,證明是定義域上的減函數(shù),且滿足等式的實(shí)數(shù)值至多只有一個。解 設(shè),且,則,所以。所以是上的減函數(shù)。假設(shè)使成立的的值有兩個,設(shè)為,且,則。但因?yàn)樯系臏p數(shù),故有。矛盾。所以使成立的的值至多有一個。例9 定義域?yàn)榈暮瘮?shù),對任意,都有,其中為常數(shù)。又知時,該函數(shù)為減函數(shù),判斷當(dāng)時,函數(shù)的單調(diào)狀況,證明自己的結(jié)論。解 當(dāng)時,函數(shù)是增函數(shù)。設(shè),則。因?yàn)楹瘮?shù)在上是減函數(shù),所以,注意到對任意,都有,可見對于實(shí)數(shù),也有,即。同理。所以,所以函數(shù)在上是增函數(shù)。例10 是定義在上的遞增函數(shù),且。(1)求證;(2)若,且,求的取值范圍。解(1)因?yàn)?,所以?2)因?yàn)椋谑?。由題設(shè)有,解得。反函數(shù)例1 求下列函數(shù)的反函數(shù)(1) (2) (3)解 (1)由得。原函數(shù)的反函數(shù)為。(2)由,得?!?,∴。 又∵ ∴,即,所求函數(shù)的反函數(shù)為。 (3)由,得。∴,∴。 ,故。又當(dāng)時,故?!啵蠛瘮?shù)的反函數(shù)為。評注 對于用解析法表示的函數(shù),求其反函數(shù),實(shí)際上只要做三件事:①把給出的函數(shù)解析式中的自變量當(dāng)作未知數(shù),因變量當(dāng)作系數(shù)的方程而解之;②求給出函數(shù)的值域,③把①②中的互換。例2 如果點(diǎn)既在函數(shù)的圖像上,又在函數(shù)的反函數(shù)的圖象上,那么____ ____。分析 確定,只要列出關(guān)于的兩個方程,而由可得一方程,但直接用則需先求出反函數(shù),應(yīng)注意。解 依題意可有:且,即,解得。例3 給定實(shí)數(shù),設(shè)函數(shù),求證:這個函
點(diǎn)擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1