【總結】解析幾何點到直線距離公式xyP0(x0,y0)O:0lAxByC???SR0022||AxByCdAB????Qd注意:化為一般式.圓的標準方程圓的定義平面內(nèi)到定點的距離等于定長的點的集合。定點定長圓心
2024-11-17 19:45
【總結】(同步復習精講輔導)北京市2021-2021學年高中數(shù)學圓的方程講義新人教A版必修2題一題面:方程211(1)xy????表示的曲線是()A.一個圓B.兩個半圓C.兩個圓D.半圓金題精講題一題面:求以(1,2),(5,6)AB??為直
2024-12-05 01:53
【總結】圓的標準方程學案班級學號姓名學學習習目目標標,體驗軌跡法的基本思想,并能根據(jù)方程寫出圓心的坐標和半徑,通過求圓的標準方程.課課前前準準備備問題1:確定直線的基本要素是什么?確定圓的基本要素又是什么呢?問題2:在平面直
2024-11-20 01:07
【總結】§4.1圓的方程圓的標準方程【課時目標】1.用定義推導圓的標準方程,并能表達點與圓的位置關系.2.掌握求圓的標準方程的不同求法.1.設圓的圓心是A(a,b),半徑長為r,則圓的標準方程是________________,當圓的圓心在坐標原點時,圓的半徑為r,則圓的標準方程是________________.
2024-12-05 06:42
【總結】第四章圓與方程本章教材分析上一章,學生已經(jīng)學習了直線與方程,知道在直角坐標系中,直線可以用方程表示,通過方程,可以研究直線間的位置關系、直線與直線的交點坐標、點到直線的距離等問題,對數(shù)形結合的思想方法有了初步體驗.本章將在上章學習了直線與方程的基礎上,學習在平面直角坐標系中建立圓的代數(shù)方程,運用代數(shù)方法研究點與圓、直線與圓、圓與圓
2024-12-03 11:32
【總結】§函數(shù)的應用3.函數(shù)與方程(一)一、基礎過關1.函數(shù)y=x2-2x-3的零點是________.2.函數(shù)f(x)=ex+x-2的零點所在的一個區(qū)間是下面的哪一個________.(填序號)①(-2,-1);②(-1,0);③(0,1);④(1,2).3.若函數(shù)f(x)=
2024-12-08 20:19
【總結】圓的標準方程學習目標:圓的標準方程,并能根據(jù)方程寫出圓心的坐標和圓的半徑。,利用幾何法或待定系數(shù)法建立圓的標準方程;能運用圓的標準方程解決一些實際問題。問題導學:[來源:]1.什么叫做圓?2。確定圓需要哪幾個要素?3.圓心是C(a,b
2024-12-09 15:49
【總結】ArxyO圓的標準方程醒民高中數(shù)學組孫鵬飛趙州橋,建于隋煬帝大業(yè)年間(595-605年),至今已有1400年的歷史,出自著名匠師李春之手,是今天世界上最古老的單肩石拱橋,是世界造橋史上的一個創(chuàng)造。我們在前面學過,在平面直角坐標系中,兩點確定一條直線,一點和傾斜角也能確定一條直線.在平面直角
2024-11-17 12:03
【總結】(數(shù)學2必修)第四章圓與方程[基礎訓練A組]一、選擇題1.圓關于原點對稱的圓的方程為()A. B.C. D.2.若為圓的弦的中點,則直線的方程是()A. B.C. D.3.圓上的點到直線的距離最大值是()A.B.C.D.4.將直線,沿軸向左平移個單位,所得直線與圓相
2025-06-19 01:47
【總結】§柱、錐、臺、球的結構特征一、課前準備(預習教材P2~P4,找出疑惑之處)引入:小學和初中我們學過平面上的一些幾何圖形如直線、三角形、長方形、圓等等,現(xiàn)實生活中,我們周圍還存在著很多不是平面上而是“空間”中的物體,它們占據(jù)著空間的一部分,比如粉筆盒、足球、,,有著不同的幾何特征,現(xiàn)在就讓我們來研究它們吧!二、基礎探究,請將這些圖片中的物體分成兩類,并說明分類的
2025-04-17 12:49
【總結】高中數(shù)學必修2第四章方程與園訓練題圓的標準方程1.圓的圓心和半徑分別是【】A.,1B.,3C.,D.,【】A.B.C.D.【】4.已知直線l的方程為,則圓上的點到直線l的距離的最
2025-04-04 05:10
【總結】§直線與圓的方程的應用一、教材分析直線與圓的方程在生產(chǎn)、生活實踐以及數(shù)學中有著廣泛的應用.本小節(jié)設置了一些例題,分別說明直線與圓的方程在實際生活中的應用,以及用坐標法研究幾何問題的基本思想及其解題過程.二、教學目標1.知識與技能(1)理解掌握,直線與圓的方程在實際生活中的應用.(2)會用“數(shù)
【總結】直線與圓的方程的應用【課時目標】1.正確理解直線與圓的概念并能解決簡單的實際問題.2.能利用直線與圓的位置關系解決簡單的實際問題.3.體會用代數(shù)方法處理幾何問題的思想.用坐標方法解決平面幾何問題的“三步曲”:一、選擇題1.實數(shù)x,y滿足方程x+y-4=0,則x2+y2的最小值為()A.
【總結】高中數(shù)學圓的方程典型例題類型一:圓的方程例1求過兩點、且圓心在直線上的圓的標準方程并判斷點與圓的關系.解法一:(待定系數(shù)法)設圓的標準方程為.∵圓心在上,故.∴圓的方程為.又∵該圓過、兩點.∴解之得:,.所以所求圓的方程為.解法二:(直接求出圓心坐標和半徑)因為圓過、兩點,所以圓心必在線段的垂直平分線上,又因為,故的斜率為1,又的中點為,故的垂直平分線的方
2025-04-04 05:07
【總結】高中數(shù)學之直線與圓的方程一、概念理解:1、傾斜角:①找α:直線向上方向、x軸正方向;②平行:α=0°;③范圍:0°≤α<180°。2、斜率:①找k:k=tanα(α≠90°);②垂直:斜率k不存在;③范圍:斜率k∈R。3
2025-04-04 05:13