freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

微積分在物理學上應(yīng)用(編輯修改稿)

2025-05-01 02:24 本頁面
 

【文章內(nèi)容簡介】 所以dt=R2/[r22g(hx)]dx,x∈[0,h]流完一桶水所需的時間 tf=0hR2r22g(hx)dx但因為被積函數(shù)是[0,h]上的無界函數(shù),所以tf =limμ→h0μR2r22g(hx)dx =2hg(Rr)2由此題可看出,在我們通常使用微積分解決物理問題時,建立坐標系是很好的一個方法,可以有助于我們更好地去解決問題。4 微積分在物理學各領(lǐng)域的應(yīng)用 微積分在質(zhì)點力學的應(yīng)用微積分在力學中的使用是非常普遍的,要用好微積分去解決問題,首先要在思想上認識到物體在運動過程中,反應(yīng)其運動特征的物理量是隨著時間的變化而變化的。運用微積分可以得出質(zhì)點的運動方程以及他的運動狀態(tài)。就比如說當我們對函數(shù)中的t進行求一階導數(shù)時,我們就可以得到該函數(shù)所表示的質(zhì)點的加速度函數(shù)。而我們可以將微積分在質(zhì)點運動時的問題可以分成以下幾類:1. 在已知道運動方程的前提下求其中的加速度和速度 ;2. 在已知質(zhì)點的加速度,以及該質(zhì)點的初始速度的前提下,求該質(zhì)點的運動方程。例1:一人站在岸上,用一條繩子拉船使其向岸邊靠攏,如圖所示,若人以恒定速率v0收繩,求船的速度。 解:如圖所示,設(shè)設(shè)船與輪子的距離為l,船的瞬時位移為x,由圖可知 x2=l2h2那么船的瞬時速度為v=dxdy=dl2h2dt=ddldtl2h2根據(jù)題意可知 v0=dldt所以 v=ll2h2v0在解決此類問題時,我們要善于從幾何關(guān)系中找到質(zhì)點的運動方程,而在一般情況下運動方程往往是t的隱函數(shù)形式。因此,將方程中的t進行一階及二階求導,就可以得出瞬時速度和瞬時加速度隨著一些空間變量的變化規(guī)律。例2:如圖,質(zhì)量M=,懸掛在一輕彈簧下,彈簧靜伸長x0=,一質(zhì)量m==,黏在箱子底部后,同箱子一起向下運動,求箱子下降的最大距離。解:球落到箱子底部時的速度為 v0=2gh設(shè)當橡皮泥與箱子一起運動時的速度為v,則 mv0=(M+m)v所以 v=mM+mv0根據(jù)動量定理知 (Mg+mgkx)dt=d[(m+M)v]得出 (Mg+mgkx)dx=(M+m)vdv上式積分后得 x0x0+x1(Mg+mgkx)dx=v0M+mvdv化簡整理后 12(M+m)v2+12kx02=(M+m)gx1+k(x1+x0)2整理之后得出 x=例3:質(zhì)量為m的質(zhì)點在力的作用下做平面曲線運動,其運動方程為r=Acosωti+Bsinωtj,式中,A,B,ω都是正的恒量,則力在t1=0到t2=∏2ω這段時間內(nèi)做的功是多少?解:在這段時間內(nèi)質(zhì)點動能的增量為 ΔEk=12mv2212mv12 =12m(vx22+vy22)t2=π2ω12m(vx12+vy12)t1=0
點擊復(fù)制文檔內(nèi)容
物理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1