【總結(jié)】F1F2F3aC'B'A'D'DABC空間向量及其線性運(yùn)算教學(xué)目標(biāo)1.運(yùn)用類比方法,經(jīng)歷向量及其運(yùn)算由平面向空間推廣的過程;2.了解空間向量的概念,掌握空間向量的線性運(yùn)算及其性質(zhì);3.理解空間向量共線的充要條件重點(diǎn)難點(diǎn)教
2024-11-20 00:30
【總結(jié)】、E、F分別是△ABC的三邊BC、CA、AB上的點(diǎn),且則與() ,,為坐標(biāo)平面上三點(diǎn),為坐標(biāo)原點(diǎn),若與在方向上的投影相同,則與滿足的關(guān)系式為( ?。ˋ) ?。˙) ?。–) ?。―),,,點(diǎn)是線段上的一個動點(diǎn),,若,則實(shí)數(shù)的取值范圍是ABCD≠,||=1,對任意t∈R,恒有|-t|≥|-|
2025-04-17 13:05
【總結(jié)】第五章線性空間與線性變換§1線性空間的概念線性空間也是線性代數(shù)的中心內(nèi)容之一,本章介紹線性空間的概念及其簡單性質(zhì),討論線性空間的基和維數(shù)的概念,介紹線性變換的概念和線性變換的矩陣表示.一.數(shù)域(1)0,1?K;定義
2024-10-18 19:01
【總結(jié)】........向量組的線性相關(guān)與線性無關(guān)設(shè),,稱為的一個線性組合?!緜渥?】按分塊矩陣的運(yùn)算規(guī)則,。這樣的表示是有好處的。設(shè),,如果存在,使得則稱可由線性表示。,寫成矩陣形式,即。因此,可由線性表示即線性方程組有解,而該方程
2025-05-16 03:01
【總結(jié)】平面向量較難題 一.選擇題(共25小題)1.過點(diǎn)P(﹣1,1)作圓C:(x﹣t)2+(y﹣t+2)2=1(t∈R)的切線,切點(diǎn)分別為A,B,則?的最小值為( )A. B. C. D.2﹣32.如圖,已知平面四邊形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC與BD交于點(diǎn)O,記I1=?,I2=?,I3=?,則( ?。〢.I1<I2<I3
2025-03-25 01:23
【總結(jié)】第六節(jié)空間向量知識提要1.空間向量的概念:在空間,我們把具有和的量叫做向量。2.空間向量的運(yùn)算。定義:與平面向量運(yùn)算一樣,空間向量的加法、減法與數(shù)乘運(yùn)算如下(如圖)。;;運(yùn)算律:⑴加法交換律:⑵加法結(jié)合律:⑶數(shù)乘分配律:3.共線向量。(1)如果表示空間向量的有向線段所在的直線
2024-08-01 04:56
【總結(jié)】(1)實(shí)數(shù)與向量的運(yùn)算法則:設(shè)、為實(shí)數(shù),則有:1)結(jié)合律:。2)分配律:,。(2)向量的數(shù)量積運(yùn)算法則:1)。2)。3)。(3)平面向量的基本定理。是同一平面內(nèi)的兩個不共線向量,則對于這一平面內(nèi)的任何一向量,有且僅有一對實(shí)數(shù),滿足。(4)與的數(shù)量積的計(jì)算公式及幾何意義:,數(shù)量積等于的長度與在的方向上的投影的乘積。(5)平面向量的運(yùn)算法則。1)設(shè)=,=,
2024-08-04 06:19
【總結(jié)】張保隆著現(xiàn)代管理數(shù)學(xué)2向量空間與線性轉(zhuǎn)換2-1向量與向量空間2-2線性獨(dú)立與基底2-3Rn的透視2-4線性轉(zhuǎn)換2-5線性轉(zhuǎn)換的代表矩陣2-6特徵值與特徵向量2-7二次形式現(xiàn)代管理數(shù)學(xué).Chapter2向量空間與線性轉(zhuǎn)換2-32-1
2024-10-17 18:27
【總結(jié)】aABABaaABaAB平面向量空間向量具有大小和方向的量具有大小和方向的量幾何表示法幾何表示法字母表示法字母表示法向量的大小向量的大小長度為零的向量長度為零的向量模為1的向量模為1的向量長度相等且方向相反的向量長
2024-11-24 17:38
【總結(jié)】向量的線性運(yùn)算一、課本鞏固練習(xí)1、如圖,平行四邊形ABCD是以向量ABa?、ADb?為邊的平行四邊形,AC、BD相交于點(diǎn)O,又13DMDO?,13ONOC?。試用a、b表示AM、AN和MN。2、如圖,已知兩個不平行的向量a、b如下,求作:
2024-11-16 01:57
【總結(jié)】點(diǎn)擊進(jìn)入相應(yīng)模塊考情快訊·權(quán)威解讀核心思想精煉·高效方法滲透專題強(qiáng)化測評高考必考熱點(diǎn)·解題技法突破考情快訊·權(quán)威解讀核心思
2025-06-15 08:44
【總結(jié)】預(yù)習(xí)學(xué)案課堂講義課后練習(xí)工具第三章空間向量與立體幾何欄目導(dǎo)引預(yù)習(xí)學(xué)案課堂講義課后練習(xí)工具第三章空間向量與立體幾何欄目導(dǎo)引3.1空間向量及其運(yùn)算預(yù)習(xí)學(xué)案課堂講義課后練習(xí)工具第三章空間向量與立體幾何欄目導(dǎo)引
2024-07-29 07:00
【總結(jié)】向量及向量的基本運(yùn)算高三備課組1)向量的有關(guān)概念①向量:既有大小又有方向的量。向量一般用……來表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如:。向量的大小即向量的模(長度),記作||。②零向量:長度為0的向量,記為,其方向是任意的,與任意向量平行。注意與
2024-11-10 07:31
【總結(jié)】零向量、單位向量概念:向量的概念:向量的表示方法:共線向量與平行直線的關(guān)系:平行向量定義:相等向量定義:ABCABC問題1:如圖,某人從點(diǎn)A到點(diǎn)B,再從點(diǎn)B按原方向到C點(diǎn),則兩次位移的和可用哪個向量表示?由此可以得到什么結(jié)論?問題2:如圖,某人從點(diǎn)A到點(diǎn)B,再從點(diǎn)B按
2024-08-14 04:08
【總結(jié)】下關(guān)一中2014級數(shù)學(xué)空間向量及其運(yùn)算1.空間向量的概念:在空間,我們把具有大小和方向的量叫做向量注:⑴空間的一個平移就是一個向量⑵向量一般用有向線段表示同向等長的有向線段表示同一或相等的向量⑶空間的兩個向量可用同一平面內(nèi)的兩條有向線段來表示2.空間向量的運(yùn)算定義:與平面向量運(yùn)算一樣,空間向量的加法、減法與數(shù)乘向量運(yùn)算如下;;運(yùn)算律:⑴加法交換律:⑵加法結(jié)
2025-03-23 11:39