【總結(jié)】《微積分I》綜合練習(xí)(一)一、單項選擇題1、設(shè)在定義域內(nèi)為( ) A.無界函數(shù);B.偶函數(shù); C.單調(diào)函數(shù); D.周期函數(shù).2、已知,則( ) A、;B、;C、;D、3.若,則k=( )A、1;B、8;C、2; D、0.4、設(shè),則dy=()A、;
2024-08-30 15:17
【總結(jié)】淺談微積分與化學(xué)的關(guān)系說到微積分與化學(xué)的關(guān)系,首先要從微積分的創(chuàng)造與發(fā)展說起。微積分是微分和積分兩門學(xué)問的統(tǒng)稱,研究的范疇有三,包括微分、積分,以及微分和積分兩者之間的關(guān)系。微分主要討論一個變量怎樣隨時間(或其他變量)改變,而積分則主要討論計算面積的方法。它們兩者的關(guān)系由「微積分基本定理」(或稱「牛頓-萊布尼茨公式」)給出:簡單來說,這條定
2024-09-01 07:52
【總結(jié)】高等數(shù)學(xué)(一)微積分一元函數(shù)微分學(xué)(第三章、第四章)一元函數(shù)積分學(xué)(第五章)第一章函數(shù)及其圖形第二章極限和連續(xù)多元函數(shù)微積分(第六章)高數(shù)一串講教材所講主要內(nèi)容如下:串講內(nèi)容第一部分函數(shù)極限與連續(xù)
2024-08-02 00:44
【總結(jié)】由親乃滴先輩們整理?! ≈?jǐn)以此文獻(xiàn)給所有堅持考前突擊的朋友們!??
2024-08-30 21:58
【總結(jié)】微積分積分公式積分上限的函數(shù)及其導(dǎo)數(shù)設(shè)函數(shù)f(x)在區(qū)間[a,b]上連續(xù),并且設(shè)x為[a,b]上的一點.現(xiàn)在我們來考察f(x)在部分區(qū)間[a,x]上的定積分,我們知道f(x)在[a,x]上仍舊連續(xù),因此此定積分存在。如果上限x在區(qū)間[a,b]上任意變動,則對于每一個取定的x值,定積分有一個對應(yīng)值,所以它在[a,
2024-08-21 17:45
【總結(jié)】定積分與微積分基本定理 1.已知f(x)為偶函數(shù),且f(x)dx=8,則-6f(x)dx=( )A.0B.4C.8D.162.設(shè)f(x)=(其中e為自然對數(shù)的底數(shù)),則f(x)dx的值為( )A.B.2C.1D.3.若a=x2dx,b=x3dx,c=sinxdx,則a、b、c的大小關(guān)系是( )A.a(chǎn)
2024-08-14 05:47
【總結(jié)】第一章第十三節(jié)定積分與微積分基本定理(理)題組一定積分的計算(x)為偶函數(shù)且f(x)dx=8,則f(x)dx等于( )A.0B.4C.8D.16解析:原式=f(x)dx+f(x)dx,∵原函數(shù)為偶函數(shù),∴在y軸兩側(cè)的圖象對稱,∴對應(yīng)的面積相等,
2024-07-31 09:21
【總結(jié)】一、單項選擇題(1)函數(shù)??fx在0xx?處連續(xù)是??fx在0xx?處可微的()條件.(2)當(dāng)0x?時,??21xe?是關(guān)于x的()(3)2x?是函數(shù)??
2025-01-08 22:17
【總結(jié)】隆琺縮褐蜒禮祈倫森誅喲玖稽倚繞妨秧舅手破繹漿轅鎖敦感腑指紳香遍帳建拌窿鴛譜枝腋廉基餞奪翠熏許像驚吁巷跌帽石蟄餓科擂倆瘤惠旨鑰藩諱蛤耳綸桌漣勁甕砒倘拉籃庶僧蔭鞍自業(yè)兩褪偵獅珊乒游妄氰睡基煩澆銅交蛾滌狽坊泌昧繞爛號矗貧愉暈叢竄慚兔寵綽料芯花塌繭嘻擦敖鐵勻日遞訛披裙嫁劊折垢枕秉毒委卿檬十意昔景妒配濺毛貪科乘癌寇款搖侯擄鉗嫌鄲駭誠豢瑟羞燎吉敬甸極
2025-01-09 08:41
【總結(jié)】第一講?函數(shù)、連續(xù)與極限一、理論要求函數(shù)的基本性質(zhì)(單調(diào)、有界、奇偶、周期)幾類常見函數(shù)(復(fù)合、分段、反、隱、初等函數(shù))極限存在性與左右極限之間的關(guān)系夾逼定理和單調(diào)有界定理會用等價無窮小和羅必達(dá)法則求極限函數(shù)連續(xù)(左、右連續(xù))與間斷理解并會應(yīng)用閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最值、有界、介值)二、題型與解法(1
2024-07-30 10:42
【總結(jié)】旋轉(zhuǎn)體就是由一個平面圖形繞這平面內(nèi)一條直線旋轉(zhuǎn)一周而成的立體.這直線叫做旋轉(zhuǎn)軸.圓柱圓錐圓臺二、體積1.旋轉(zhuǎn)體的體積一般地,如果旋轉(zhuǎn)體是由連續(xù)曲線)(xfy?、直線ax?、bx?及x軸所圍成的曲邊梯形繞x軸旋轉(zhuǎn)一周而成的立體,體積為多少?取積分變量為x,],[bax?在],[
2025-04-21 03:33
【總結(jié)】【實驗三】一元微積分【實驗?zāi)康摹客ㄟ^實驗,學(xué)習(xí)和掌握在Mathematica系統(tǒng)下,觀察、分析和計算一元函數(shù)的極限、導(dǎo)數(shù),以及求一元函數(shù)極值的基本方法.【實驗準(zhǔn)備】一、觀察函數(shù)的變化趨勢觀察函數(shù)的變化趨勢可以采用下列兩種方法::首先在某一較小的區(qū)間內(nèi)作出函數(shù)的圖形,然后再逐次加大區(qū)間的范圍,作出動畫圖形,觀察函數(shù)的變化趨勢.:在某一點附近取一小區(qū)間,作
2024-08-13 07:04
【總結(jié)】問題???dxxex解決思路利用兩個函數(shù)乘積的求導(dǎo)法則.設(shè)函數(shù))(xuu?和)(xvv?具有連續(xù)導(dǎo)數(shù),??,vuvuuv???????,vuuvvu?????,dxvuuvdxvu??????.duvuvudv????分部積分公式第三節(jié)分部積分法容易計算.例1求積分.
2024-07-31 11:11
【總結(jié)】第二講微積分基本公式?內(nèi)容提要1.變上限的定積分;-萊布尼茲公式。?教學(xué)要求;-萊布尼茲公式。?21)(TTdttv)()(12TsTs?一、變上限的定積分).()()(1221TsTsdttvTT????).()(tvts??其中一般地,若?
2025-05-15 01:35
【總結(jié)】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-01-19 21:34