【總結(jié)】勾股定理的逆定理第1課時勾股定理的逆定理滬科版·八年級數(shù)學(xué)下冊狀元成才路狀元成才路新課導(dǎo)入勾股定理如果直角三角形兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2.提問如果將條件和結(jié)論反過來,這個命題還成立嗎?狀元成才路
2025-03-13 03:09
【總結(jié)】2直角三角形第1課時勾股定理及其逆定理北師版八年級數(shù)學(xué)下冊新課導(dǎo)入我們學(xué)過直角三角形的哪些性質(zhì)和判定方法?與同伴交流.ABC想一想新課探究(1)直角三角形的兩個銳角有怎樣的關(guān)系?為什么?(2)如果一個三角形有兩個角互余,那么這個三角形是直角
2025-03-12 21:17
【總結(jié)】管住你的手:重點知識記筆記,難點問題細心演管住你的口:老師提問要回答,小組交流要積極如圖,河南區(qū)一個工廠,在公路西側(cè),到公路的距離與到河岸的距離相等,并且與河上公路橋較近橋頭的距離為300米。在圖上標(biāo)出工廠的位置,并說明理由。北比例尺1:20200七嘴八舌出主意
2024-11-24 15:46
【總結(jié)】勾股定理及其逆定理一、知識點1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2)2、勾股定理的逆定理:如果三角形的三邊長:a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形。3、滿足的三個正整數(shù),稱為勾股數(shù)。二、典型題型1、求線段的長度題型2、判斷直角三角形題型3、求最短距離三、主要數(shù)學(xué)思想和方法(1
2025-06-22 04:05
【總結(jié)】第一篇:勾股定理逆定理教學(xué)設(shè)計 18.2勾股定理的逆定理 一、教學(xué)目標(biāo) 知識與技能:1.應(yīng)用勾股定理的逆定理判斷一個三角形是否是直角三角形。 2.靈活應(yīng)用勾股定理及逆定理解綜合題。 3.進一...
2024-11-04 18:23
【總結(jié)】高考正弦定理和余弦定理練習(xí)題及答案一、選擇題1.已知△ABC中,a=c=2,A=30°,則b=( )A. B.2C.3 D.+1答案:B解析:∵a=c=2,∴A=C=30°,∴B=120°.由余弦定理可得b=2.2.△ABC中,a=,b=,sinB=,則符合條件的三角形有( )
2025-06-26 04:58
【總結(jié)】課題:正弦定理、余弦定理綜合運用(二)?課題:正弦定理、余弦定理綜合運用(二)知識目標(biāo):1、三角形形狀的判斷依據(jù);?2、利用正弦、余弦定理進行邊角互換。能力目標(biāo):1、進一步熟悉正、余弦定理;2、
2025-08-16 01:07
【總結(jié)】一元二次方程根與系數(shù)的關(guān)系一元二次方程x2-12x+11=02x2-3x=04x2+4x+1=0猜想:x1,x2x1+x2x1?x21211-1學(xué)習(xí)主題:求根,觀察、歸納、猜想x1=1,x2=110x1+x2=x1·x2=觀察,一元二次方程的兩根之和與那些項的系數(shù)有關(guān)?兩根之積與那些項的系數(shù)
2025-08-05 17:28
【總結(jié)】1、如圖,在Rt△ABC中,∠C=900,CD⊥AB于AD=2cm,DB=6cm,求CD,AC,BC的長。CADB2、如圖,在⊿ABC中,CD⊥AB于D,DE⊥AC于E,DF⊥BC于F。求證:⊿CEF∽⊿CBACEFAD
2024-11-19 07:59
【總結(jié)】ABC這是1955年希臘發(fā)行的一枚紀念郵票,郵票上的圖案是根據(jù)一個著名的數(shù)學(xué)定理設(shè)計的。這是1955年希臘發(fā)行的一枚紀念郵票,郵票上的圖案是根據(jù)一個著名的數(shù)學(xué)定理設(shè)計的。ABCⅠⅡⅢABC這是用“補”的方法ⅢABCⅢ這是用“割”的方法ABCⅠⅡⅢ
2025-01-19 09:58
【總結(jié)】課題垂徑定理惠陽區(qū)第四中學(xué)教材分析?教材的地位和作用:本節(jié)課要研究的是圓的軸對稱性與垂徑定理及簡單應(yīng)用,垂徑定理既是前面圓的性質(zhì)的重要體現(xiàn),是圓的軸對稱性的具體化,也是今后證明線段相等、角相等、弧相等、垂直關(guān)系的重要依據(jù),同時也是為進行圓的計算和作圖提供了方法和依據(jù),所以它在教材中處于非常重要的位置。學(xué)情分析?
2024-10-17 10:32
【總結(jié)】勾股定理是一條古老而又應(yīng)用十分廣泛的定理。例如從勾股定理出發(fā)逐漸發(fā)展了開平方、開立方;用勾股定理求圓周率。據(jù)說4000多年前,中國的大禹曾在治理洪水的過程中利用勾股定理來測量兩地的地勢差。勾股定理以其簡單、優(yōu)美的形式,豐富、深刻的內(nèi)容,充分反映了自然界的和諧關(guān)系。人們對勾股定理一直保持著極高的熱情,僅定理的證明就多達幾十種,甚至
2024-11-06 19:33
【總結(jié)】§勾股定理李春梅長春市第三十中學(xué)這是一個會標(biāo),同學(xué)們認識這是什么大會的會標(biāo)嗎?弦圖∵1/2ab×4+(b-a)2=c2∴a2+b2=c2abca2+b2=c2勾
2024-10-24 16:42
【總結(jié)】?素材正弦定理,證明一(傳統(tǒng)證法)在任意斜△ABC當(dāng)中:S△ABC=兩邊同除以即得:==AbcBacCabsin21sin21sin21??abc21AasinBbsinC
2025-08-23 15:23
【總結(jié)】正弦定理、余弦定理基礎(chǔ)練習(xí) 1.在△ABC中: ?。?)已知、、,求b; ?。?)已知、、,求. 2.在△ABC中(角度精確到1°): ?。?)已知、c=7、B=60°,求C; ?。?)已知、b=7、A=50°,求B. 3.在△ABC中(結(jié)果保留兩個有效數(shù)字): (1)已知a=5、b=7、C=120°,求
2025-06-25 03:15