freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

20xx屆江西省奉新縣第一中學高三上學期第五次月考數(shù)學(文)試題(含解析)(編輯修改稿)

2025-04-05 05:36 本頁面
 

【文章內容簡介】 域,可得的范圍.【詳解】由題意可得,,曲線上存在點,使得,存在,使成立.函數(shù)在它的定義域內單調遞增,下面證明.假設,則(c),不滿足.同理假設,則不滿足.綜上可得:.則問題等價于方程,有解,即在有解,分離參數(shù)可得,令,∵,所以函數(shù)在上單調遞增,所以,所以.故選:A.【點睛】本題主要考查正弦函數(shù)的圖象和性質,利用導數(shù)研究函數(shù)的單調性,由單調性求函數(shù)的值域,體現(xiàn)了轉化的數(shù)學思想,屬于中檔題.二、填空題13.已知,則__________.【答案】【詳解】因為,所以,①因為,所以,②①②得,即,解得,故本題正確答案為14.在平面直角坐標系中,為原點, ,動點滿足,則的最大值是________.【答案】【詳解】試題分析:設,表示以為圓心,r=1為半徑的圓,而,所以,,故得最大值為【解析】1.圓的標準方程;2.向量模的運算15.已知等差數(shù)列的公差不為0,等比數(shù)列的公比是小于1的正有理數(shù),若,且是正整數(shù),則______.【答案】【分析】運用等差數(shù)列和等比數(shù)列的通項公式,確定的表達式,利用是正整數(shù),是小于1的正有理數(shù),通過驗證的方法可以求解.【詳解】解:由已知,∵∴,且,∴,∴,又q為小于1的正有理數(shù),∴是一個完全平方數(shù),可得或或或,則(舍)或或(舍)或(舍)∴.故答案為:.【點睛】本題主要考查等差數(shù)列和等比數(shù)列的通項公式的應用,考查運算能力,是一道中檔題.16.關于函數(shù)有以下四個結論:①函數(shù)的最大值為;②把函數(shù)的圖象向右平移個單位可得到函數(shù)的圖象;③函數(shù)在區(qū)間上單調遞增;④函數(shù)圖象的對稱中心為.其中正確的結論是___________.【答案】③④【分析】運用降冪公式和輔助角公式化簡函數(shù)的解析式,再根據(jù)正弦型函數(shù)的性質和圖象變換性質進行判斷即可.【詳解】.①:顯然的最大值為,故本結論不正確;②:函數(shù)的圖象向右平移個單位可得到,所以本結論不正確;③:當時,而 ,所以本說法正確;④:,所以函數(shù)圖象的對稱中心為,因此本說法正確,故答案為:③④三、解答題17.記為等比數(shù)列的前項積,已知.(1)求的通項公式;(2)求的最大值.【答案】(1);(2)64.【分析】(1)根據(jù)等比數(shù)列的通項公式,通過解方程組進行求解即可;(2)根據(jù)等差數(shù)列的前項和公式,結合指數(shù)復合函數(shù)單調性
點擊復制文檔內容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1