freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

遵義市八年級(jí)數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題精選附答案(5)(編輯修改稿)

2025-04-05 03:18 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 ③∵△ABC為等腰直角三角形,∴∠ABC=∠ACB=45176。.∴∠ABD+∠DBC=45176。.∵∠ABD=∠ACE,∴∠ACE+∠DBC=45176。.本結(jié)論正確.④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得:BE2=BD2+DE2.∵△ADE為等腰直角三角形,∴DE=AD,即DE2=2AD2.∴BE2=BD2+DE2=BD2+2AD2.而B(niǎo)D2≠2AB2,本結(jié)論錯(cuò)誤.綜上所述,正確的個(gè)數(shù)為3個(gè).故選C.6.C解析:C【解析】【分析】根據(jù)三角形的面積判斷出PE+PF的長(zhǎng)等于AC的長(zhǎng),這樣就變成了求AC的長(zhǎng);在Rt△ACD和Rt△ABC中,利用勾股定理表示出AC,解方程就可以得到AD的長(zhǎng),再利用勾股定理就可以求出AC的長(zhǎng),也就是PE+PF的長(zhǎng).【詳解】∵△DCB為等腰三角形,PE⊥AB,PF⊥CD,AC⊥BD,∴S△BCD=BD?PE+CD?PF=BD?AC,∴PE+PF=AC,設(shè)AD=x,BD=CD=3x,AB=4x,∵AC2=CD2AD2=(3x)2x2=8x2,∵AC2=BC2AB2=()2(4x)2,∴x=2,∴AC=4,∴PE+PF=4.故選C【點(diǎn)睛】本題考查勾股定理、等腰三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用面積法證明線段之間的關(guān)系,靈活運(yùn)用勾股定理解決問(wèn)題,屬于中考??碱}型.7.D解析:D【解析】【分析】連接BD,作CF⊥AB于F,由線段垂直平分線的性質(zhì)得出BD=AD,AE=BE,得出∠DBE=∠DAB=30176。,由直角三角形的性質(zhì)得出BD=AD=2DE=,AE=BE=DE=3,證出△BCD是直角三角形,∠CBD=90176。,得出∠BCF=30176。,得出BF=BC=,CF=BF=,求出EF=BE+BF=,在Rt△CEF中,由勾股定理即可得出結(jié)果.【詳解】解:連接BD,作CF⊥AB于F,如圖所示:則∠BFC=90176。,∵點(diǎn)E為AB的中點(diǎn),DE⊥AB,∴BD=AD,AE=BE,∵∠DAB=30176。,∴∠DBE=∠DAB=30176。,BD=AD=2DE=,AE=BE=DE=3,∵BC2+BD2=12+(2)2=13=CD2,∴△BCD是直角三角形,∠CBD=90176。,∴∠CBF=180176。30176。90176。=60176。,∴∠BCF=30176。,∠BFC=90176。,∴∠BCF=30176。,∴BF=BC=,CF=BF=,∴EF=BE+BF=, 在Rt△CEF中,由勾股定理得:CE=; 故選D.【點(diǎn)睛】本題考查了勾股定理、勾股定理的逆定理、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì);熟練掌握勾股定理和逆定理是解題的關(guān)鍵.8.D解析:D【分析】要求最短路徑,首先要把圓柱的側(cè)面展開(kāi),利用兩點(diǎn)之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開(kāi),展開(kāi)圖如圖所示,點(diǎn),的最短距離為線段的長(zhǎng).∵已知圓柱的底面直徑,∴,在中, ,∴,∴從點(diǎn)爬到點(diǎn),然后再沿另一面爬回點(diǎn),則小蟲(chóng)爬行的最短路程的平方為.故選D.【點(diǎn)睛】本題考查了平面展開(kāi)最短路徑問(wèn)題,解題的關(guān)鍵是會(huì)將圓柱的側(cè)面展開(kāi),并利用勾股定理解答.9.C解析:C【分析】根據(jù)勾股定理即可得到正方形A的面積加上B的面積加上C的面積和D的面積是E的面積.即可求解.【詳解】四個(gè)正方形的面積的和是正方形E的面積:即;故答案為C.【點(diǎn)睛】理解正方形A,B,C,D的面積的和是E的面積是解決本題的關(guān)鍵.10.B解析:B【分析】過(guò)點(diǎn)C作CO⊥AB于O,延長(zhǎng)CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP,此時(shí)DP+CP=DP+PC′=DC′的值最小.由DC=2,BD=6,得到BC=8,連接BC′,由對(duì)稱性可知∠C′BA=∠CBA=45176。,于是得到∠CBC′=90176。,然后根據(jù)勾股定理即可得到結(jié)論.【詳解】解:過(guò)點(diǎn)C作CO⊥AB于O,延長(zhǎng)CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP.此時(shí)DP+CP=DP+PC′=DC′的值最?。逥C=2,BD=6,∴BC=8,連接BC′,由對(duì)稱性可知∠C′BA=∠CBA=45176。,∴∠CBC′=90176。,∴BC′⊥BC,∠BCC′=∠BC′C=45176。,∴BC=BC′=8,根據(jù)勾股定理可得DC′=.故選:B.【點(diǎn)睛】此題考查了軸對(duì)稱﹣線路最短的問(wèn)題,確定動(dòng)點(diǎn)P為何位置時(shí) PC+PD的值最小是解題的關(guān)鍵.11.D解析:D【分析】先用已知條件利用SAS的三角形全等的判定定理證出△EAB≌△CAM,之后利用全等三角形的性質(zhì)定理分別可得,,然后設(shè),繼而可分別求出,所以;易證Rt△ACB≌Rt△DCG(HL),從而得,然后代入所求數(shù)據(jù)即可得的值.【詳解】解:∵在△EAB和△CAM中 ,
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1