freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

深圳市八年級數(shù)學試卷易錯易錯壓軸勾股定理選擇題試題(附答案)(2)(編輯修改稿)

2025-04-02 04:35 本頁面
 

【文章內容簡介】 以求出三個的面積之和.【詳解】利用勾股定理可得: ,∴ 故選B【點睛】本題主要考查勾股定理的應用,熟練掌握相關性質定理是解題關鍵.6.C解析:C【分析】作DE⊥AB于E,由勾股定理計算出可求BC=8,再利用角平分線的性質得到DE=DC,設DE=DC=x,利用等等面積法列方程、解方程即可解答.【詳解】解:作DE⊥AB于E,如圖,在Rt△ABC中,BC==8,∵AD是△ABC的一條角平分線,DC⊥AC,DE⊥AB,∴DE=DC,設DE=DC=x,S△ABD=DE?AB=AC?BD,即10x=6(8﹣x),解得x=3,即點D到AB邊的距離為3.故答案為C.【點睛】本題考查了角平分線的性質和勾股定理的相關知識,理解角的平分線上的點到角的兩邊的距離相等是解答本題的關鍵..7.C解析:C【分析】當C′落在AB上,點B與E重合時,AC39。長度的值最小,根據(jù)勾股定理得到AB=5cm,由折疊的性質知,BC′=BC=3cm,于是得到結論.【詳解】解:當C′落在AB上,點B與E重合時,AC39。長度的值最小,∵∠C=90176。,AC=4cm,BC=3cm,∴AB=5cm,由折疊的性質知,BC′=BC=3cm,∴AC′=ABBC′=2cm.故選:C.【點睛】本題考查了翻折變換(折疊問題),勾股定理,熟練掌握折疊的性質是解題的關鍵.8.C解析:C【分析】根據(jù)為等腰三角形,分三種情況進行討論,分別求出BP的長度,從而求出t值即可.【詳解】在中,,①如圖,當時,;②如圖,當時,∵,∴,;③如圖,當時,設,則,∵在中,∴,解得:,∴,綜上所述,當為等腰三角形時,或或.故選:C.【點睛】本題考查了勾股定理,等腰三角形的性質,注意分類討論.9.B解析:B【分析】首先由,得知動點P在與AB平行且與AB的距離為3的直線上,作點A關于直線的對稱點E,連接AE、BE,則BE的長就是所求的最短距離,然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【詳解】解:∵, 設點P到CD的距離為h,則點P到AB的距離為(4h),則,解得:h=1,∴點P到CD的距離1,到AB的距離為3,∴如下圖所示,動點P在與AB平行且與AB的距離為3的直線上,作點A關于直線的對稱點E,連接AE、BE,且兩點之間線段最短,∴PA+PB的最小值即為BE的長度,AE=6,AB=3,∠BAE=90176。,根據(jù)勾股定理:,故選:B.【點睛】本題考查了軸對稱—最短路線問題(兩點之間線段最短),勾股定理,得出動點P所在的位置是解題的關鍵.10.A解析:A【分析】分三種情況討論:把左側面展開到水平面上,連結AB;把右側面展開到正面上,連結AB,;把向上的面展開到正面上,連結AB;然后利用勾股定理分別計算各情況下的AB,再進行大小比較.【詳解】把左側面展開到水平面上,連結AB,如圖1把右側面展開到正面上,連結AB,如圖2把向上的面展開到正面上,連結AB,如圖3∵∴ ∴需要爬行的最短距離為25cm故選:A.【點睛】本題考查了平面展開及其最短路徑問題:先根據(jù)題意把立體圖形展開成平面圖形后,再確定兩點之間的最短路徑.一般情況是兩點之間,線段最短.在平面圖形上構造直角三角形解決問題.11.D解析:D【分析】根據(jù)勾股定理的逆定理,三角形的內角和定理,分別對每個選項進行判斷,即可得到答案.【詳解】解:∵,得,符合勾股定理逆定理,則①正確;∵,得到,符合勾股定理逆定理,則②正確;∵∠A=∠B∠C,得∠B=∠A+∠C,∵∠A+∠B+∠C=180176。,∴∠B=90176。,故③正確;∵∠A∶∠B∶∠C=1∶2∶3,∠A+∠B+∠C=180176。,∴,故④正確;∵,則⑤不能構成直角三角形,故⑤錯誤;∵,則⑥能構成直角三角形,故⑥正確;∴能構成直角三角形的有5個;故選擇:D.【點睛】本題考查了勾股定理的逆定理,以及三角形的內角和定理,解題的關鍵是熟練掌握用勾股定理的逆定理和三角形內角和定理進行判斷三角形是直角三角形.12.C解析:C【解析】試題解析:作點關于直線的對稱點,連接并延長,與直線的交點即為使得取最大值時對應的點此時過點作于點如圖,四邊形為矩形,的最大值為:故答案為:13.D解析:D【分析】由勾股定理的逆定理,只要驗證兩小邊的平方和等于最長邊的平方或最大角是否是即可.【詳解】解:、是直角三角形,故能判定是直角三角形;、,故能判定是直角三角形;、,故能判定是直角三角形;、不是直角三角形,故不能判定是直角三角形;故選:.【點睛】
點擊復制文檔內容
法律信息相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1