freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

長治市八年級數(shù)學試卷易錯易錯壓軸勾股定理選擇題試題(附答案)(1)(編輯修改稿)

2025-04-05 03:52 本頁面
 

【文章內(nèi)容簡介】 176。,CD⊥BD,∴BD=CD,設(shè)BD=x,救援艇到達C處所用的時間為t,∵tan∠CAD=,AD=AB+BD,∴,得x=20(海里),∴BC=BD=20(海里),∴t= = (小時),故選C.【點睛】本題考查特殊角三角函數(shù),正確添加輔助線、熟練掌握特殊角的三角函數(shù)值是解題關(guān)鍵.6.D解析:D【解析】【分析】本題就是把圓柱的側(cè)面展開成矩形,“化曲面為平面”,用勾股定理解決..要求彩帶的長,需將圓柱的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果,在求線段長時,借助于勾股定理.【詳解】如圖,由圖可知,彩帶從易拉罐底端的A處繞易拉罐4圈后到達頂端的B處,將易拉罐表面切開展開呈長方形,則螺旋線長為四個長方形并排后的長方形的對角線長,設(shè)彩帶最短長度為xcm,∵∵易拉罐底面周長是12cm,高是20cm,∴x2=(124)2+202∴x2=(124)2+202,所以彩帶最短是52cm.故選D.【點睛】本題考查了平面展開??最短路徑問題,圓柱的側(cè)面展開圖是一個矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,7.D解析:D【解析】【分析】根據(jù)菱形的對角線互相垂直平分可得AC⊥BD,,再利用勾股定理列式求出AB,然后根據(jù)菱形的四條邊都相等列式計算即可得解.【詳解】解:∵四邊形ABCD是菱形,∴AC⊥BD,=3cm, 根據(jù)勾股定理得, ,所以,這個菱形的周長=45=20cm.故選:D.【點睛】本題考查了菱形的性質(zhì),勾股定理,主要利用了菱形的對角線互相垂直平分,需熟記.8.B解析:B【分析】過點O作OE⊥BC于E,OF⊥AC于F,由角平分線的性質(zhì)得到OD=OE=OF,根據(jù)勾股定理求出BC的長,易得四邊形ADFO為正方形,根據(jù)線段間的轉(zhuǎn)化即可得出結(jié)果.【詳解】解:過點O作OE⊥BC于E,OF⊥AC于F, ∵BO,CO分別為∠ABC,∠ACB的平分線,所以O(shè)D=OE=OF,又BO=BO,∴△BDO≌△BEO,∴BE=BD.同理可得,CE=CF.又四邊形ADOE為矩形,∴四邊形ADOE為正方形.∴AD=AF.∵在Rt△ABC中,AB=6,AC=8,∴BC=10.∴AD+BD=6①,AF+FC=8②,BE+CE=BD+CF=10③,①+②得,AD+BD+AF+FC=14,即2AD+10=14,∴AD=2.故選:B.【點睛】此題考查了角平分線的定義與性質(zhì),以及全等三角形的判定與性質(zhì),屬于中考常考題型.9.D解析:D【分析】先根據(jù)勾股定理求出梯子的長,進而根據(jù)勾股定理可得出小巷的寬度.【詳解】解:如圖,由題意可得:AD2=+=,在Rt△ABC中,∵∠ABC=90176。,BC=,BC2+AB2=AC2,AD=AC,∴AB2+=,∴AB=177。2,∵AB>0,∴AB=2米,∴小巷的寬度為:+2=(米).故選:D.【點睛】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實際問題時勾股定理與方程的結(jié)合是解決實際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.10.C解析:C【分析】存在2種情況,△ABC是銳角三角形和鈍角三角形時,高AD分別在△ABC的內(nèi)部和外部【詳解】情況一:如下圖,△ABC是銳角三角形∵AD是高,∴AD⊥BC∵AB=15,AD=12∴在Rt△ABD中,BD=9∵AC=13,AD=12∴在Rt△ACD中,DC=5∴△ABC的周長為:15+12+9+5=42情況二:如下圖,△ABC是鈍角三角形在Rt△ADC中,AD=12,AC=13,∴DC=5在Rt△ABD中,AD=12,AB=15,∴DB=9∴BC=4∴△ABC的周長為:15+13+4=32故選:C【點睛】本題考查勾股定理,解題關(guān)鍵是多解,注意當幾何題型題干未提供圖形時,往往存在多解情況.11.C解析:C【分析】先根據(jù)勾股定理的逆定理證明△ABC是直角三角形,根據(jù)垂直平分線的性質(zhì)證得AD=BD,由此根據(jù)勾股定理求出CD.【詳解】∵AB=10,AC=8,BC=6,∴,∴△ABC是直角三角形,且∠C=90176。,∵DE垂直平分AB,∴AD=BD,在Rt△BCD中, ,∴,解得CD=,故選:C.【點睛】此題考查勾股定理及其逆定理,線段垂直平分線的性質(zhì),題中證得△ABC是直角三角形,且∠C=90176。是解題的關(guān)鍵,再利用勾股定理求解.12.A解析:A【分析】連接FC,根據(jù)基本作圖,可得OE垂直平分AC,由垂直平分線的性質(zhì)得出AF=FC.再根據(jù)ASA證明△FOA≌△BOC,那么AF=BC=3,等量代換得到FC=AF=3,利用線段的和差關(guān)系求出FD=ADAF=1.然后在直角△FDC中利用勾股定理求出CD的長.【詳解】解:如圖,連接FC,∵點O是AC的中點,由作法可知,OE垂直平分AC,∴AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA與△BOC中, ,∴△FOA≌△BOC(ASA),∴AF=BC=6,∴FC=AF=6,F(xiàn)D=ADAF=86=2.在△FDC中,∵∠D=90176。,∴CD2+DF2=FC2,∴CD2+22=62,∴CD=.故選:A.【點睛】本題考查了作圖基本作圖,勾股定理,線段垂直平分線的判定與性質(zhì),全等三角形的判定與性質(zhì),難度
點擊復制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1