freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學(xué)提高題專題復(fù)習(xí)二次函數(shù)練習(xí)題及答案解析(編輯修改稿)

2025-03-31 22:13 本頁面
 

【文章內(nèi)容簡介】 ;②∵x2=1,∴a+b+c=0,∴c=﹣a﹣b,∵a>2b>3c,∴a>2b>3(﹣a﹣b),且a>0,整理可得,解得﹣<<,∵P(,),∴OP2=()2+()2=()2+()2=2()2+2+1=2(+)2+,令m=,則﹣<m<且m≠0,且OP2=2(m+)2+,∵2>0,∴當(dāng)﹣<m<﹣時,OP2隨m的增大而減小,當(dāng)m=﹣時,OP2有最大臨界值,當(dāng)m=﹣時,OP2有最小臨界值,當(dāng)﹣<m<時,OP2隨m的增大而增大,當(dāng)m=﹣時,OP2有最小臨界值,當(dāng)m=時,OP2有最大臨界值,∴≤OP2且OP2≠1,∵P到原點的距離為非負(fù)數(shù),∴≤OP<且OP≠1.【點睛】本題為二次函數(shù)的綜合應(yīng)用,涉及新定義、函數(shù)圖象的交點、一元二次方程根與系數(shù)的關(guān)系、勾股定理、二次函數(shù)的性質(zhì)、分類討論思想及轉(zhuǎn)化思想等知識.在(1)中注意利用和諧三數(shù)組的定義,在(2)中由和諧三數(shù)組得到關(guān)于t的方程是解題的關(guān)鍵,在(3)①中用a、b、c分別表示出x1,x2,x3是解題的關(guān)鍵,在(3)②中把OP2表示成二次函數(shù)的形式是解題的關(guān)鍵.本題考查知識點較多,綜合性較強,特別是最后一問,難度很大.7.如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于、兩點,與軸交于點,其中,.(1)若直線經(jīng)過、兩點,求直線和拋物線的解析式;(2)在拋物線的對稱軸上找一點,使點到點的距離與到點的距離之和最小,求出點的坐標(biāo);(3)設(shè)點為拋物線的對稱軸上的一個動點,求使為直角三角形的點的坐標(biāo).【答案】(1)拋物線的解析式為,直線的解析式為.(2);(3)的坐標(biāo)為或或或.【解析】分析:(1)先把點A,C的坐標(biāo)分別代入拋物線解析式得到a和b,c的關(guān)系式,再根據(jù)拋物線的對稱軸方程可得a和b的關(guān)系,再聯(lián)立得到方程組,解方程組,求出a,b,c的值即可得到拋物線解析式;把B、C兩點的坐標(biāo)代入直線y=mx+n,解方程組求出m和n的值即可得到直線解析式;(2)設(shè)直線BC與對稱軸x=1的交點為M,此時MA+MC的值最小.把x=1代入直線y=x+3得y的值,即可求出點M坐標(biāo);(3)設(shè)P(1,t),又因為B(3,0),C(0,3),所以可得BC2=18,PB2=(1+3)2+t2=4+t2,PC2=(1)2+(t3)2=t26t+10,再分三種情況分別討論求出符合題意t值即可求出點P的坐標(biāo).詳解:(1)依題意得:,解得:,∴拋物線的解析式為.∵對稱軸為,且拋物線經(jīng)過,∴把、分別代入直線,得,解之得:,∴直線的解析式為.(2)直線與對稱軸的交點為,則此時的值最小,把代入直線得,∴.即當(dāng)點到點的距離與到點的距離之和最小時的坐標(biāo)為.(注:本題只求坐標(biāo)沒說要求證明為何此時的值最小,所以答案未證明的值最小的原因).(3)設(shè),又,∴,,①若點為直角頂點,則,即:解得:,②若點為直角頂點,則,即:解得:,③若點為直角頂點,則,即:解得:,.綜上所述的坐標(biāo)為或或或.點睛:本題綜合考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法求函數(shù)(二次函數(shù)和一次函數(shù))的解析式、利用軸對稱性質(zhì)確定線段的最小長度、難度不是很大,是一道不錯的中考壓軸題.8.如圖,已知頂點為的拋物線與軸交于,兩點,直線過頂點和點.(1)求的值;(2)求函數(shù)的解析式;(3)拋物線上是否存在點,使得?若存在,求出點的坐標(biāo);若不存在,請說明理由.【答案】(1)﹣3;(2)yx2﹣3;(3)M的坐標(biāo)為(3,6)或(,﹣2).【解析】【分析】(1)把C(0,﹣3)代入直線y=x+m中解答即可;(2)把y=0代入直線解析式得出點B的坐標(biāo),再利用待定系數(shù)法確定函數(shù)關(guān)系式即可;(3)分M在BC上方和下方兩種情況進(jìn)行解答即可.【詳解】(1)將C(0,﹣3)代入y=x+m,可得:m=﹣3;(2)將y=0代入y=x﹣3得:x=3,所以點B的坐標(biāo)為(3,0),將(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函數(shù)的解析式為:yx2﹣3;(3)存在,分以下兩種情況:①若M在B上方,設(shè)MC交x軸于點D,則∠ODC=45176。+15176。=60176。,∴OD=OC?tan30176。,設(shè)DC為y=kx﹣3,代入(,0),可得:k,聯(lián)立兩個方程可得:,解得:,所以M1(3,6);②若M在B下方,設(shè)MC交x軸于點E,則∠OEC=45176。15176。=30176。,∴OE=OC?tan60176。=3,設(shè)EC為y=kx﹣3,代入(3,0)可得:k,聯(lián)立兩個方程可得:,解得:,所以M2(,﹣2).綜上所述M的坐標(biāo)為(3,6)或(,﹣2).【點睛】此題是一道二次函數(shù)綜合題,熟練掌握待定系數(shù)法求函數(shù)解析式等知識是解題關(guān)鍵.9.在平面直角坐標(biāo)系xOy中,已知拋物線的頂點坐標(biāo)為(2,0),且經(jīng)過點(4,1),如圖,直線y=x與拋物線交于A、B兩點,直線l為y=﹣1.(1)求拋物線的解析式;(2)在l上是否存在一點P,使PA+PB取得最小值?若存在,求出點P的坐標(biāo);若不存在,請說明理由.(3)知F(x0,y0)為平面內(nèi)一定點,M(m,n)為拋物線上一動點,且點M到直線l的距離與點M到點F的距離總是相等,求定點F的坐標(biāo).【答案】(1)拋物線的解析式為y=x2﹣x+1.(2)點P的坐標(biāo)為(,﹣1).(3)定點F的坐標(biāo)為(2,1).【解析】分析:(1)由拋物線的頂點坐標(biāo)為(2,0),可設(shè)拋物線的解析式為y=a(x2)2,由拋物線過點(4,1),利用待定系數(shù)法即可求出拋物線的解析式;(2)聯(lián)立直線AB與拋物線解析式成方程組,通過解方程組可求出點A、B的坐標(biāo),作點B關(guān)于直線l的對稱點B′,連接AB′交直線l于點P,此時PA+PB取得最小值,根據(jù)點B的坐標(biāo)可得出點B′的坐標(biāo),根據(jù)點A、B′的坐標(biāo)利用待定系數(shù)法可求出直線AB′的解析式,再利用一次函數(shù)圖象上點的坐標(biāo)特征即可求出點P的坐標(biāo);(3)由點M到直線l的距離與點M到點F的距離總是相等結(jié)合二次函數(shù)圖象上點的坐標(biāo)特征,即可得出(1y0)m2+(22x0+2y0)m+x02+y022y03=0,由m的任意性可得出關(guān)于x0、y0的方程組,解之即可求出頂點F的坐標(biāo).詳解:(1)∵拋物線的頂點坐標(biāo)為(2,0),設(shè)拋物線的解析式為y=a(x2)2.∵該拋物線經(jīng)過點(4,1),∴1=4a,解得:a=,∴拋物線的解析式為y=(x2)2=x2x+1.(2)聯(lián)立直線AB與拋物線解析式成方程組,得:,解得:,∴點A的坐標(biāo)為(1,),點B的坐標(biāo)為(4,1).作點B關(guān)于直線l的對稱點B′,連接AB′交直線l于點P,此時PA+PB取得最小值(如圖1所示).∵點B(4,1),直線l為y=1,∴點B′的坐標(biāo)為(4,3).設(shè)直線AB′的解析式為y=kx+b(k≠0),將A(1,)、B′(4,3)代入y=kx+b,得:,解得:,∴直線AB′的解
點擊復(fù)制文檔內(nèi)容
高考資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1