freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)易錯題精選-二次函數(shù)練習(xí)題及詳細答案(編輯修改稿)

2025-03-30 22:26 本頁面
 

【文章內(nèi)容簡介】 或(﹣,﹣);②如圖中,∵MN∥x軸,∴點M、N關(guān)于拋物線的對稱軸對稱,∵四邊形MPNQ是正方形,∴點P是拋物線的對稱軸與x軸的交點,即OP=1,易證GM=GP,即|﹣m2+2m+3|=|1﹣m|,當﹣m2+2m+3=1﹣m時,解得m=,當﹣m2+2m+3=m﹣1時,解得m=,∴滿足條件的m的值為或.【點睛】本題考查二次函數(shù)綜合題、銳角三角函數(shù)、正方形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.7.如圖,菱形ABCD的邊長為20cm,∠ABC=120176。,對角線AC,BD相交于點O,動點P從點A出發(fā),以4cm/s的速度,沿A→B的路線向點B運動;過點P作PQ∥BD,與AC相交于點Q,設(shè)運動時間為t秒,0<t<5.(1)設(shè)四邊形PQCB的面積為S,求S與t的關(guān)系式;(2)若點Q關(guān)于O的對稱點為M,過點P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點N,當t為何值時,點P、M、N在一直線上?(3)直線PN與AC相交于H點,連接PM,NM,是否存在某一時刻t,使得直線PN平分四邊形APMN的面積?若存在,求出t的值;若不存在,請說明理由.【答案】(1) S=﹣2(0<t<5); (2) 。(3)見解析.【解析】【分析】(1)如圖1,根據(jù)S=S△ABCS△APQ,代入可得S與t的關(guān)系式;(2)設(shè)PM=x,則AM=2x,可得AP=x=4t,計算x的值,根據(jù)直角三角形30度角的性質(zhì)可得AM=2PM=,根據(jù)AM=AO+OM,列方程可得t的值;(3)存在,通過畫圖可知:N在CD上時,直線PN平分四邊形APMN的面積,根據(jù)面積相等可得MG=AP,由AM=AO+OM,列式可得t的值.【詳解】解:(1)如圖1,∵四邊形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=60176。,AC⊥BD,∴∠OAB=30176。,∵AB=20,∴OB=10,AO=10,由題意得:AP=4t,∴PQ=2t,AQ=2t,∴S=S△ABC﹣S△APQ,=,= ,=﹣2t2+100(0<t<5);(2)如圖2,在Rt△APM中,AP=4t,∵點Q關(guān)于O的對稱點為M,∴OM=OQ,設(shè)PM=x,則AM=2x,∴AP=x=4t,∴x=,∴AM=2PM=,∵AM=AO+OM,∴=10+10﹣2t,t=;答:當t為秒時,點P、M、N在一直線上;(3)存在,如圖3,∵直線PN平分四邊形APMN的面積,∴S△APN=S△PMN,過M作MG⊥PN于G,∴ ,∴MG=AP,易得△APH≌△MGH,∴AH=HM=t,∵AM=AO+OM,同理可知:OM=OQ=10﹣2t,t=10=10﹣2t,t=.答:當t為秒時,使得直線PN平分四邊形APMN的面積.【點睛】考查了全等三角形的判定與性質(zhì),對稱的性質(zhì),三角形和四邊形的面積,二次根式的化簡等知識點,計算量大,解答本題的關(guān)鍵是熟練掌握動點運動時所構(gòu)成的三角形各邊的關(guān)系.8.如圖1,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C.(1)求拋物線的解析式;(2)設(shè)拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.(3)在(1)中拋物線的對稱軸上是否存在點Q,使得△QAC的周長最???若存在,求出Q點的坐標;若不存在,請說明理由.(4)如圖2,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.【答案】(1)y=﹣x2﹣2x+3;(2)存在符合條件的點P,其坐標為P(﹣1,)或P(﹣1,﹣)或P(﹣1,6)或P(﹣1,);(3)存在,Q(﹣1,2);(4), .【解析】【分析】(1)已知拋物線過A、B兩點,可將兩點的坐標代入拋物線的解析式中,用待定系數(shù)法即可求出二次函數(shù)的解析式;(2)可根據(jù)(1)的函數(shù)解析式得出拋物線的對稱軸,也就得出了M點的坐標,由于C是拋物線與y軸的交點,因此C的坐標為(0,3),根據(jù)M、C的坐標可求出CM的距離.然后分三種情況進行討論:①當CP=PM時,P位于CM的垂直平分線上.求P點坐標關(guān)鍵是求P的縱坐標,過P作PQ⊥y軸于Q,如果設(shè)PM=CP=x,那么直角三角形CPQ中CP=x,OM的長,可根據(jù)M的坐標得出,CQ=3﹣x,因此可根據(jù)勾股定理求出x的值,P點的橫坐標與M的橫坐標相同,縱坐標為x,由此可得出P的坐標.②當CM=MP時,根據(jù)CM的長即可求出P的縱坐標,也就得出了P的坐標(要注意分上下兩點).③當CM=CP時,因為C的坐標為(0,3),那么直線y=3必垂直平分PM,因此P的縱坐標是6,由此可得出P的坐標;(3)根據(jù)軸對稱﹣最短路徑問題解答;(4)由于四邊形BOCE不是規(guī)則的四邊形,因此可將四邊形BOCE分割成規(guī)則的圖形進行計算,過E作EF⊥x軸于F,S四邊形BOCE=S△BFE+S梯形FOCE.直角梯形FOCE中,F(xiàn)O為E的橫坐標的絕對值,EF為E的縱坐標,已知C的縱坐標,就知道了OC的長.在△BFE中,BF=BO﹣OF,因此可用E的橫坐標表示出BF的長.如果根據(jù)拋物線設(shè)出E的坐標,然后代入上面的線段中,即可得出關(guān)于四邊形BOCE的面積與E的橫坐標的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求得四邊形BOCE的最大值及對應(yīng)的E的橫坐標的值.即可求出此時E的坐標.【詳解】(1)∵拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(﹣3,0),∴,解得:.∴所求拋物線解析式為:y=﹣x2﹣2x+3;(2)如答圖1,∵拋物線解析式為:y=﹣x2﹣2x+3,∴其對稱軸為x==﹣1,∴設(shè)P點坐標為(﹣1,a),當x=0時,y=3,∴C(0,3),M(﹣1,0)∴當CP=PM時,(﹣1)2+(3﹣a)2=a2,解得a=,∴P點坐標為:P1(﹣1,);∴當CM=PM時,(﹣1)2+32=a2,解得a=177。,∴P點坐標為:P2(﹣1,)或P3(﹣1,﹣);∴當CM=CP時,由勾股定理得:(﹣1)2+32=(﹣1)2+(3﹣a)2,解得a=6,∴P點坐標為:P4(﹣1,6).綜上所述存在符合條件的點P,其坐標為P(﹣1,)或P(﹣1,﹣)或P(﹣1,6)或P(﹣1,);(3)存在,Q(﹣1,2),理由如下:如答圖2,點C(0,3)關(guān)于對稱軸x=﹣1的對稱點C′的坐標是(﹣2,3),連接AC′,直線AC′與對稱軸的交點即為點Q.設(shè)直線AC′函數(shù)關(guān)系式為:y=kx+t(k≠0).將點A(1,0),C′(﹣2,3)代入,得,解得,所以,直線AC′函數(shù)關(guān)系式為:y=﹣x+1.將x=﹣1代入,得y=2,即:Q(﹣1,2);(4)過點E作EF⊥x軸于點F,設(shè)E(a,﹣a2﹣2a+3)(﹣3<a<0)∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a∴S四邊形BOCE=BF?EF+(OC+EF)?OF=(a+3)?(﹣a2﹣2a+3)+(﹣a2﹣2a+6)?(﹣a)=﹣a2﹣a+=﹣(a+)2+,∴當a=﹣時,S四邊形BOCE最大,且最大值為.此時,點E坐標為(﹣ ,).【點睛】本題主要考查了二次函數(shù)的綜合知識,要注意的是(2)中,不確定等腰三角形哪條邊是底邊的情況下,要分類進行求解,不要漏解.9.如圖,在直角坐標系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.(1)求這個二次函數(shù)的解析式;(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標;(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90176。?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由.【答案】(1)y=x2﹣3x。(2)點B的坐標為:
點擊復(fù)制文檔內(nèi)容
物理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1