freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學(xué)二次函數(shù)提高練習(xí)題壓軸題訓(xùn)練附詳細(xì)答案(編輯修改稿)

2025-03-31 07:28 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 線段最短解決最短路徑問(wèn)題;會(huì)運(yùn)用分類討論的思想解決數(shù)學(xué)問(wèn)題.6.函數(shù)的圖象記為,函數(shù)的圖象記為,其中為常數(shù),與合起來(lái)的圖象記為.(Ⅰ)若過(guò)點(diǎn)時(shí),求的值;(Ⅱ)若的頂點(diǎn)在直線上,求的值;(Ⅲ)設(shè)在上最高點(diǎn)的縱坐標(biāo)為,當(dāng)時(shí),求的取值范圍.【答案】(Ⅰ);(Ⅱ);(Ⅲ).【解析】【分析】(Ⅰ)將點(diǎn)C的坐標(biāo)代入的解析式即可求出m的值;(Ⅱ)先求出拋物線的頂點(diǎn)坐標(biāo),再根據(jù)頂點(diǎn)在直線上得出關(guān)于m的方程,解之即可(Ⅲ)先求出拋物線的頂點(diǎn)坐標(biāo),結(jié)合(Ⅱ)拋物線的頂點(diǎn)坐標(biāo),和x的取值范圍,分三種情形討論求解即可;【詳解】解:(Ⅰ)將點(diǎn)代入的解析式,解得(Ⅱ)拋物線的頂點(diǎn)坐標(biāo)為,令,得∵,∴(Ⅲ)∵拋物線的頂點(diǎn),拋物線的頂點(diǎn),當(dāng)時(shí),最高點(diǎn)是拋物線G1的頂點(diǎn)∴,解得當(dāng)時(shí),G1中(2,2m1)是最高點(diǎn),2m1∴2m1,解得當(dāng)時(shí),G2中(4,4m9)是最高點(diǎn),4m9.∴4m9,解得.綜上所述,即為所求.【點(diǎn)睛】本題考查二次函數(shù)綜合題,待定系數(shù)法、不等式組等知識(shí),解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)用分類討論的思想思考問(wèn)題,利用數(shù)形結(jié)合的思想解決問(wèn)題,屬于中考?jí)狠S題.7.如圖,菱形ABCD的邊長(zhǎng)為20cm,∠ABC=120176。,對(duì)角線AC,BD相交于點(diǎn)O,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以4cm/s的速度,沿A→B的路線向點(diǎn)B運(yùn)動(dòng);過(guò)點(diǎn)P作PQ∥BD,與AC相交于點(diǎn)Q,設(shè)運(yùn)動(dòng)時(shí)間為t秒,0<t<5.(1)設(shè)四邊形PQCB的面積為S,求S與t的關(guān)系式;(2)若點(diǎn)Q關(guān)于O的對(duì)稱點(diǎn)為M,過(guò)點(diǎn)P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點(diǎn)N,當(dāng)t為何值時(shí),點(diǎn)P、M、N在一直線上?(3)直線PN與AC相交于H點(diǎn),連接PM,NM,是否存在某一時(shí)刻t,使得直線PN平分四邊形APMN的面積?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.【答案】(1) S=﹣2(0<t<5); (2) 。(3)見(jiàn)解析.【解析】【分析】(1)如圖1,根據(jù)S=S△ABCS△APQ,代入可得S與t的關(guān)系式;(2)設(shè)PM=x,則AM=2x,可得AP=x=4t,計(jì)算x的值,根據(jù)直角三角形30度角的性質(zhì)可得AM=2PM=,根據(jù)AM=AO+OM,列方程可得t的值;(3)存在,通過(guò)畫(huà)圖可知:N在CD上時(shí),直線PN平分四邊形APMN的面積,根據(jù)面積相等可得MG=AP,由AM=AO+OM,列式可得t的值.【詳解】解:(1)如圖1,∵四邊形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=60176。,AC⊥BD,∴∠OAB=30176。,∵AB=20,∴OB=10,AO=10,由題意得:AP=4t,∴PQ=2t,AQ=2t,∴S=S△ABC﹣S△APQ,=,= ,=﹣2t2+100(0<t<5);(2)如圖2,在Rt△APM中,AP=4t,∵點(diǎn)Q關(guān)于O的對(duì)稱點(diǎn)為M,∴OM=OQ,設(shè)PM=x,則AM=2x,∴AP=x=4t,∴x=,∴AM=2PM=,∵AM=AO+OM,∴=10+10﹣2t,t=;答:當(dāng)t為秒時(shí),點(diǎn)P、M、N在一直線上;(3)存在,如圖3,∵直線PN平分四邊形APMN的面積,∴S△APN=S△PMN,過(guò)M作MG⊥PN于G,∴ ,∴MG=AP,易得△APH≌△MGH,∴AH=HM=t,∵AM=AO+OM,同理可知:OM=OQ=10﹣2t,t=10=10﹣2t,t=.答:當(dāng)t為秒時(shí),使得直線PN平分四邊形APMN的面積.【點(diǎn)睛】考查了全等三角形的判定與性質(zhì),對(duì)稱的性質(zhì),三角形和四邊形的面積,二次根式的化簡(jiǎn)等知識(shí)點(diǎn),計(jì)算量大,解答本題的關(guān)鍵是熟練掌握動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)所構(gòu)成的三角形各邊的關(guān)系.8.如圖1,二次函數(shù)的圖像與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).(1)求二次函數(shù)的表達(dá)式及點(diǎn)、點(diǎn)的坐標(biāo)。(2)若點(diǎn)在二次函數(shù)圖像上,且,求點(diǎn)的橫坐標(biāo)。(3)將直線向下平移,與二次函數(shù)圖像交于兩點(diǎn)(在左側(cè)),如圖2,過(guò)作軸,與直線交于點(diǎn),過(guò)作軸,與直線交于點(diǎn),當(dāng)?shù)闹底畲髸r(shí),求點(diǎn)的坐標(biāo).【答案】(1)y=,A(﹣1,0),B(4,0);(2)D點(diǎn)的橫坐標(biāo)為2+2,2﹣2,2;(3)M(,﹣)【解析】【分析】(1)求出a,即可求解;(2)求出直線BC的解析式,過(guò)點(diǎn)D作DH∥y軸,與直線BC交于點(diǎn)H,根據(jù)三角形面積的關(guān)系求解;(3)過(guò)點(diǎn)M作MG∥x軸,交FN的延長(zhǎng)線于點(diǎn)G,設(shè)M(m,m2﹣m﹣3),N(n,n2﹣n﹣3),判斷四邊形MNFE是平行四邊形,根據(jù)ME=NF,求出m+n=4,再確定ME+MN=﹣m2+3m+5﹣m=﹣(m﹣)2+,即可求M;【詳解】(1)y=ax2﹣3ax﹣4a與y軸交于點(diǎn)C(0,﹣3),∴a=,∴y=x2﹣x﹣3,與x軸交點(diǎn)A(﹣1,0),B(4,0);(2)設(shè)直線BC的解析式為y=kx+b,∴,∴,∴y=x﹣3;過(guò)點(diǎn)D作DH∥y軸,與直線BC交于點(diǎn)H,設(shè)H(x,x﹣3),D(x,x2﹣x﹣3),∴DH=|x2﹣3x|,∵S△ABC=,∴S△DBC==6,∴S△DBC=2|x2﹣3x|=6,∴x=2+2,x=2﹣2,x=2;∴D點(diǎn)的橫坐標(biāo)為2+2,2﹣2,2;(3)過(guò)點(diǎn)M作MG∥x軸,交FN的延長(zhǎng)線于點(diǎn)G,設(shè)M(m,m2﹣m﹣3),N(n,n2﹣n﹣3),則E(m,m﹣3),F(xiàn)(n,n﹣3),∴ME=﹣m2+3m,NF=﹣n2+3n,∵EF∥MN,ME∥NF,∴四邊形MNFE是平行四邊形,∴ME=NF,∴﹣m2+3m=﹣n2+3n,∴m+n=4,∴MG=n﹣m=4﹣2m,∴∠NMG=∠OBC,∴cos∠NMG=cos∠OBC=,∵B(4,0),C(0,﹣3),∴OB=4,OC=3,在Rt△BOC中,BC=5,∴MN=(n﹣m)=(4﹣2m)=5﹣m,∴ME+MN=﹣m2+3m+5﹣m=﹣(m﹣)2+,∵﹣<0,∴當(dāng)m=時(shí),ME+MN有最大值,∴M(,﹣)【點(diǎn)睛】本題考查二次函數(shù)圖象及性質(zhì),一次函數(shù)圖象及性質(zhì);熟練掌握待定系數(shù)法求函數(shù)解析式的方法,結(jié)合三角形的性質(zhì)解題.9.(12分)如圖所示是隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12 m,寬是4 m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線上的點(diǎn)C到OB的水平距離為3 m,到地面OA的距離為m. (1)求拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;(2)一輛貨運(yùn)汽車載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過(guò)?(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過(guò)8m,那么兩排燈的水平距離最小是多少米?【答案】(1)拋物線的函數(shù)關(guān)系式為y=x2+2x+4,拱頂D到地面OA的距離為10 m;(2)兩排燈的水平距離最小是4 m.【解析】【詳解】試題分析:根據(jù)點(diǎn)B和點(diǎn)C在函數(shù)圖象上,利用待定系數(shù)法求出b和c的值,從而得出函數(shù)解析式,根據(jù)解析式求出頂點(diǎn)坐標(biāo),得出最大值;根據(jù)題意得出車最外側(cè)與地面OA的交點(diǎn)為(2,0)(或
點(diǎn)擊復(fù)制文檔內(nèi)容
合同協(xié)議相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1