freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學(xué)壓軸題專題二次函數(shù)的經(jīng)典綜合題附答案(編輯修改稿)

2025-03-31 07:31 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 △MNB最大面積;此時(shí)點(diǎn)M在D點(diǎn),點(diǎn)N在對(duì)稱軸上x(chóng)軸上方2個(gè)單位處或點(diǎn)N在對(duì)稱軸上x(chóng)軸下方2個(gè)單位處.【詳解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函數(shù)的表達(dá)式為:y=x2﹣4x+3;(2)令y=0,則x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,點(diǎn)P在y軸上,當(dāng)△PBC為等腰三角形時(shí)分三種情況進(jìn)行討論:如圖1,①當(dāng)CP=CB時(shí),PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②當(dāng)PB=PC時(shí),OP=OB=3,∴P3(0,3);③當(dāng)BP=BC時(shí),∵OC=OB=3∴此時(shí)P與O重合,∴P4(0,0);綜上所述,點(diǎn)P的坐標(biāo)為:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);(3)如圖2,設(shè)AM=t,由AB=2,得BM=2﹣t,則DN=2t,∴S△MNB=(2﹣t)2t=﹣t2+2t=﹣(t﹣1)2+1,當(dāng)點(diǎn)M出發(fā)1秒到達(dá)D點(diǎn)時(shí),△MNB面積最大,最大面積是1.此時(shí)點(diǎn)N在對(duì)稱軸上x(chóng)軸上方2個(gè)單位處或點(diǎn)N在對(duì)稱軸上x(chóng)軸下方2個(gè)單位處.7.如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過(guò)點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過(guò)點(diǎn)A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線C2:(<0)的頂點(diǎn).(1)求A、B兩點(diǎn)的坐標(biāo);(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請(qǐng)說(shuō)明理由;(3)當(dāng)△BDM為直角三角形時(shí),求的值.【答案】(1)A(,0)、B(3,0).(2)存在.S△PBC最大值為 (3)或時(shí),△BDM為直角三角形.【解析】【分析】(1)在中令y=0,即可得到A、B兩點(diǎn)的坐標(biāo).(2)先用待定系數(shù)法得到拋物線C1的解析式,由S△PBC = S△POC+ S△BOP–S△BOC得到△PBC面積的表達(dá)式,根據(jù)二次函數(shù)最值原理求出最大值.(3)先表示出DM2,BD2,MB2,再分兩種情況:①∠BMD=90176。時(shí);②∠BDM=90176。時(shí),討論即可求得m的值.【詳解】解:(1)令y=0,則,∵m<0,∴,解得:,.∴A(,0)、B(3,0).(2)存在.理由如下:∵設(shè)拋物線C1的表達(dá)式為(),把C(0,)代入可得,.∴C1的表達(dá)式為:,即.設(shè)P(p,),∴ S△PBC = S△POC+ S△BOP–S△BOC=.∵0,∴當(dāng)時(shí),S△PBC最大值為.(3)由C2可知: B(3,0),D(0,),M(1,),∴BD2=,BM2=,DM2=.∵∠MBD90176。, ∴討論∠BMD=90176。和∠BDM=90176。兩種情況:當(dāng)∠BMD=90176。時(shí),BM2+ DM2= BD2,即+=,解得:,(舍去).當(dāng)∠BDM=90176。時(shí),BD2+ DM2= BM2,即+=,解得:,(舍去) .綜上所述,或時(shí),△BDM為直角三角形.8.如圖,某足球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)射門,(點(diǎn)A在y軸上),足球的飛行高度y(單位:m)與飛行時(shí)間t(單位:s)之間滿足函數(shù)關(guān)系y=at2+5t+c,.(1)足球飛行的時(shí)間是多少時(shí),足球離地面最高?最大高度是多少?(2)若足球飛行的水平距離x(單位:m)與飛行時(shí)間t(單位:s)之間具有函數(shù)關(guān)系x=10t,如果該運(yùn)動(dòng)員正對(duì)球門射門時(shí),離球門的水平距離為28m,他能否將球直接射入球門?【答案】(1)足球飛行的時(shí)間是s時(shí),足球離地面最高,;(2)能.【解析】試題分析:(1)由題意得:函數(shù)y=at2+5t+c的圖象經(jīng)過(guò)(0,)(,),于是得到,求得拋物線的解析式為:y=﹣t2+5t+,當(dāng)t=時(shí),y最大=;(2)把x=28代入x=10t得t=,當(dāng)t=,y=﹣+5+=<,于是得到他能將球直接射入球門.解:(1)由題意得:函數(shù)y=at2+5t+c的圖象經(jīng)過(guò)(0,)(,),∴,解得:,∴拋物線的解析式為:y=﹣t2+5t+,∴當(dāng)t=時(shí),y最大=;(2)把x=28代入x=10t得t=,∴當(dāng)t=,y=﹣+5+=<,∴他能將球直接射入球門.考點(diǎn):二次函數(shù)的應(yīng)用.9.如圖,已知A(﹣2,0),B(4,0),拋物線y=ax2+bx﹣1過(guò)A、B兩點(diǎn),并與過(guò)A點(diǎn)的直線y=﹣x﹣1交于點(diǎn)C.(1)求拋物線解析式及對(duì)稱軸;(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使四邊形ACPO的周長(zhǎng)最?。咳舸嬖?,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;(3)點(diǎn)M為y軸右側(cè)拋物線上一點(diǎn),過(guò)點(diǎn)M作直線AC的垂線,垂足為N.問(wèn):是否存在這樣的點(diǎn)N,使以點(diǎn)M、N、C為頂點(diǎn)的三角形與△AOC相似,若存在,求出點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.【答案】(1)拋物線解析式為:y=,拋物線對(duì)稱軸為直線x=1;(2)存在P點(diǎn)坐標(biāo)為(1,﹣);(3)N點(diǎn)坐標(biāo)為(4,﹣3)或(2,﹣1)【解析】分析:(1)由待定系數(shù)法求解即可;(2)將四邊形周長(zhǎng)最小轉(zhuǎn)化為PC+PO最小即可;(3)利用相似三角形對(duì)應(yīng)點(diǎn)進(jìn)行分類討論,構(gòu)造圖形.設(shè)出點(diǎn)N坐標(biāo),表示點(diǎn)M坐標(biāo)代入拋物線解析式即可.詳解:(1)把A(2,0),B(4,0)代入拋物線y=ax2+bx1,得 解得 ∴拋物線解析式為:y=x2?x?1∴拋物線對(duì)稱軸為直線x==1(2)存在使四邊形ACPO的周長(zhǎng)最小,只需PC+PO最小∴取點(diǎn)C(0,1)關(guān)于直線x=1的對(duì)稱點(diǎn)C′(2,1),連C′O與直線x=1的交點(diǎn)即為P點(diǎn).設(shè)過(guò)點(diǎn)C′、O直線解析式為:y=kx∴k=∴y=x則P點(diǎn)坐標(biāo)為(1,)(3)當(dāng)△AOC∽△MNC時(shí),如圖,延長(zhǎng)MN交y軸于點(diǎn)D,過(guò)點(diǎn)N作NE⊥y軸于點(diǎn)E∵∠ACO=∠NCD,∠AOC=∠CND=90176?!唷螩DN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵M(jìn)N⊥AC∴M、D關(guān)于AN對(duì)稱,則N為DM中點(diǎn)設(shè)點(diǎn)N坐標(biāo)為(a,a1)由△EDN∽△OAC∴ED=2a∴點(diǎn)D坐標(biāo)為(0,a?1)∵N為DM中點(diǎn)∴點(diǎn)M坐標(biāo)為(2a,a?1)把M代入y=x2?x?1,解得a=4則N點(diǎn)坐標(biāo)為(4,3)當(dāng)△AOC∽△CNM時(shí),∠CAO=∠NCM∴CM∥AB則點(diǎn)C關(guān)于直線x=1的對(duì)稱點(diǎn)C′即為點(diǎn)N由(2)N(2,1)∴N點(diǎn)坐標(biāo)為(4,3)或(2,1)點(diǎn)睛:本題為代數(shù)幾何綜合題,考查了待定系數(shù)、兩點(diǎn)之間線段最短的數(shù)學(xué)模型構(gòu)造、三角形相似.解答時(shí),應(yīng)用了數(shù)形結(jié)合和分類討論的數(shù)學(xué)思想.10.如圖甲,直線y=﹣x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,經(jīng)過(guò)B、C兩點(diǎn)的拋物線y=x2+bx+c與x軸的另一個(gè)交點(diǎn)為A,頂點(diǎn)為P.(1)求該拋物線的解析式;(2)在該拋物線的對(duì)稱軸上是否存在點(diǎn)M,使以C,P,M為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫出所符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;(3)當(dāng)0<x<3時(shí),在拋物線上求一點(diǎn)E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點(diǎn)坐標(biāo)為(,)時(shí),△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點(diǎn)坐標(biāo)及對(duì)稱軸,可設(shè)出M點(diǎn)坐標(biāo),表示出MC、MP和PC的長(zhǎng),分MC=MP、MC=PC和MP=PC三種情況,可分別得到關(guān)于M點(diǎn)坐標(biāo)的方程,可求得M點(diǎn)的坐標(biāo);(3)過(guò)E作EF⊥x軸,交直線BC于點(diǎn)F,交x軸于點(diǎn)D,可設(shè)出E點(diǎn)坐標(biāo),表示出F點(diǎn)的坐標(biāo),表示出E
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1