freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學(xué)(二次函數(shù)提高練習(xí)題)壓軸題訓(xùn)練及詳細(xì)答案(1)(編輯修改稿)

2025-03-31 07:27 本頁面
 

【文章內(nèi)容簡介】 176。,EF=3,PF=6,△PEF(點(diǎn)F和點(diǎn)A重合)的邊EF和矩形的邊AB在同一直線上.現(xiàn)將Rt△PEF從A以每秒1個(gè)單位的速度向射線AB方向勻速平移,當(dāng)點(diǎn)F與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,解答下列問題:(1)如圖1,連接PD,填空:PE=   ,∠PFD=   度,四邊形PEAD的面積是  ??;(2)如圖2,當(dāng)PF經(jīng)過點(diǎn)D時(shí),求△PEF運(yùn)動(dòng)時(shí)間t的值;(3)在運(yùn)動(dòng)的過程中,設(shè)△PEF與△ABD重疊部分面積為S,請直接寫出S與t的函數(shù)關(guān)系式及相應(yīng)的t的取值范圍.【答案】(1)300,;(2);(3)見解析.【解析】分析:(1)根據(jù)銳角三角形函數(shù)可求出角的度數(shù),然后根據(jù)勾股定理求出PE的長,再根據(jù)梯形的面積公式求解.(2)當(dāng)PF經(jīng)過點(diǎn)D時(shí),PE∥DA,由EF=3,PF=6,可得∠EPD=∠ADF=30176。,用三角函數(shù)計(jì)算可得AF=t=;(3)根據(jù)題意,分三種情況:①當(dāng)0≤t<時(shí),②≤t<3時(shí),③3≤t≤6時(shí),根據(jù)三角形、梯形的面積的求法,求出S與t的函數(shù)關(guān)系式即可.詳解:(1)∵在Rt△PEF中,∠PEF=90176。,EF=3,PF=6∴sin∠P= ∴∠P=30176?!逷E∥AD∴∠PAD=300,根據(jù)勾股定理可得PE=3,所以S四邊形PEAD=(3+3)3=; (2)當(dāng)PF經(jīng)過點(diǎn)D時(shí),PE∥DA,由EF=3,PF=6,得∠EPF=∠ADF=30176。,在Rt△ADF中,由AD=3,得AF=,所以t= ; (3)分三種情況討論: ①當(dāng)0≤t<時(shí), PF交AD于Q,∵AF=t,AQ=t,∴S=tt=;②當(dāng)≤t<3時(shí),PF交BD于K,作KH⊥AB于H,∵AF=t,∴BF=3t,S△ABD=,∵∠FBK=∠FKB,∴FB=FK=3t,KH=KFsin600=,∴S=S△ABD﹣S△FBK =③當(dāng)3≤t≤3時(shí),PE與BD交O,PF交BD于K,∵AF=t,∴AE=t3,BF=3t,BE=3t+3,OE=BEtan300=,∴S=.點(diǎn)睛:此題主要考查了幾何變換綜合題,用到的知識點(diǎn)有直角三角形的性質(zhì),三角函數(shù)值,三角形的面積,圖形的平移等,考查了分析推理能力,分類討論思想,數(shù)形結(jié)合思想,要熟練掌握,比較困難.8.如圖,拋物線y=ax2+6x+c交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C.直線y=x﹣5經(jīng)過點(diǎn)B,C.(1)求拋物線的解析式;(2)過點(diǎn)A的直線交直線BC于點(diǎn)M.①當(dāng)AM⊥BC時(shí),過拋物線上一動(dòng)點(diǎn)P(不與點(diǎn)B,C重合),作直線AM的平行線交直線BC于點(diǎn)Q,若以點(diǎn)A,M,P,Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的橫坐標(biāo);②連接AC,當(dāng)直線AM與直線BC的夾角等于∠ACB的2倍時(shí),請直接寫出點(diǎn)M的坐標(biāo).【答案】(1)拋物線解析式為y=﹣x2+6x﹣5;(2)①P點(diǎn)的橫坐標(biāo)為4或或;②點(diǎn)M的坐標(biāo)為(,﹣)或(,﹣).【解析】分析:(1)利用一次函數(shù)解析式確定C(0,5),B(5,0),然后利用待定系數(shù)法求拋物線解析式;(2)①先解方程x2+6x5=0得A(1,0),再判斷△OCB為等腰直角三角形得到∠OBC=∠OCB=45176。,則△AMB為等腰直角三角形,所以AM=2,接著根據(jù)平行四邊形的性質(zhì)得到PQ=AM=2,PQ⊥BC,作PD⊥x軸交直線BC于D,如圖1,利用∠PDQ=45176。得到PD=PQ=4,設(shè)P(m,m2+6m5),則D(m,m5),討論:當(dāng)P點(diǎn)在直線BC上方時(shí),PD=m2+6m5(m5)=4;當(dāng)P點(diǎn)在直線BC下方時(shí),PD=m5(m2+6m5),然后分別解方程即可得到P點(diǎn)的橫坐標(biāo);②作AN⊥BC于N,NH⊥x軸于H,作AC的垂直平分線交BC于M1,交AC于E,如圖2,利用等腰三角形的性質(zhì)和三角形外角性質(zhì)得到∠AM1B=2∠ACB,再確定N(3,2),AC的解析式為y=5x5,E點(diǎn)坐標(biāo)為(,),利用兩直線垂直的問題可設(shè)直線EM1的解析式為y=x+b,把E(,)代入求出b得到直線EM1的解析式為y=x,則解方程組得M1點(diǎn)的坐標(biāo);作直線BC上作點(diǎn)M1關(guān)于N點(diǎn)的對稱點(diǎn)M2,如圖2,利用對稱性得到∠AM2C=∠AM1B=2∠ACB,設(shè)M2(x,x5),根據(jù)中點(diǎn)坐標(biāo)公式得到3=,然后求出x即可得到M2的坐標(biāo),從而得到滿足條件的點(diǎn)M的坐標(biāo).詳解:(1)當(dāng)x=0時(shí),y=x﹣5=﹣5,則C(0,﹣5),當(dāng)y=0時(shí),x﹣5=0,解得x=5,則B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴拋物線解析式為y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,則A(1,0),∵B(5,0),C(0,﹣5),∴△OCB為等腰直角三角形,∴∠OBC=∠OCB=45176。,∵AM⊥BC,∴△AMB為等腰直角三角形,∴AM=AB=4=2,∵以點(diǎn)A,M,P,Q為頂點(diǎn)的四邊形是平行四邊形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x軸交直線BC于D,如圖1,則∠PDQ=45176。,∴PD=PQ=2=4,設(shè)P(m,﹣m2+6m﹣5),則D(m,m﹣5),當(dāng)P點(diǎn)在直線BC上方時(shí),PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,當(dāng)P點(diǎn)在直線BC下方時(shí),PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,綜上所述,P點(diǎn)的橫坐標(biāo)為4或或;②作AN⊥BC于N,NH⊥x軸于H,作AC的垂直平分線交BC于M1,交AC于E,如圖2,∵M(jìn)1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB為等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式為y=5x﹣5,E點(diǎn)坐標(biāo)為(,﹣,設(shè)直線EM1的解析式為y=﹣x+b,把E(,﹣)代入得﹣+b=﹣,解得b=﹣,∴直線EM1的解析式為y=﹣x﹣解方程組得,則M1(,﹣);作直線BC上作點(diǎn)M1關(guān)于N點(diǎn)的對稱點(diǎn)M2,如圖2,則∠AM2C=∠AM1B=2∠ACB,設(shè)M2(x,x﹣5),∵3=∴x=,∴M2(,﹣).綜上所述,點(diǎn)M的坐標(biāo)為(,﹣)或(,﹣).點(diǎn)睛:本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、二次函數(shù)的性質(zhì)、等腰直角的判定與性質(zhì)和平行四邊形的性質(zhì);會(huì)利用待定系數(shù)法求函數(shù)解析式;理解坐標(biāo)與圖形性質(zhì);會(huì)運(yùn)用分類討論的思想解決數(shù)學(xué)問題.9.如圖1,在平面直角坐標(biāo)系中,直
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1