freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx初三數(shù)學(xué)平行四邊形的專項(xiàng)培優(yōu)練習(xí)題(含答案)(編輯修改稿)

2025-03-30 22:23 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 】(1)見解析;(2)12;探究:2或2.【解析】試題分析:(1)利用一組對(duì)邊平行且相等的四邊形是平行四邊形,得到四邊形ABFE是平行四邊形,然后根據(jù)平行四邊形的性質(zhì)證得OE=OB,即可證得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中點(diǎn),則可以求得△ABE、△ABF的面積,根據(jù)S四邊形CDOF=S矩形ABCD2S△ABF即可求解.探究:畫出符合條件的兩種情況:①求出四邊形A′DCB是平行四邊形,求出BC和A′D推出∠ACB=90176。,根據(jù)三角形面積公式求出即可;②求出高CQ,求出△A′DC的面積.即可求出△ABC的面積.試題解析:(1)∵四邊形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四邊形ABFE是平行四邊形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB與△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四邊形CDOF=S矩形ABCD2S△ABF=46243=12.探究:解:分為兩種情況:①如圖1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折疊A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD與△ABC重合部分的面積等于△ABC面積的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四邊形A′DCB是平行四邊形,∴BC=A′D=2,過B作BM⊥AC于M,∵AB=4,∠BAC=30176。,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90176。,由勾股定理得:AC=,∴△ABC的面積是BCAC=22=2;②如圖2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折疊A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD與△ABC重合部分的面積等于△ABC面積的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四邊形A′BDC是平行四邊形,∴A′C=BD=2,過C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30176。,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2A′DCQ=221=2;即△ABC的面積是2或2.考點(diǎn):四邊形綜合題.9.如圖,在正方形ABCD中,點(diǎn)G在對(duì)角線BD上(不與點(diǎn)B,D重合),GE⊥DC于點(diǎn)E,GF⊥BC于點(diǎn)F,連結(jié)AG.(1)寫出線段AG,GE,GF長(zhǎng)度之間的數(shù)量關(guān)系,并說明理由;(2)若正方形ABCD的邊長(zhǎng)為1,∠AGF=105176。,求線段BG的長(zhǎng).【答案】(1)AG2=GE2+GF2(2)【解析】試題分析:(1)結(jié)論:AG2=GE2+GF2.只要證明GA=GC,四邊形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可證明;(2)作BN⊥AG于N,在BN上截取一點(diǎn)M,使得AM=BM.設(shè)AN=x.易證AM=BM=2x,MN=x,在Rt△ABN中,根據(jù)AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根據(jù)BG=BN247。cos30176。即可解決問題.試題解析:(1)結(jié)論:AG2=GE2+GF2.理由:連接CG.∵四邊形ABCD是正方形,∴A、C關(guān)于對(duì)角線BD對(duì)稱,∵點(diǎn)G在BD上,∴GA=GC,∵GE⊥DC于點(diǎn)E,GF⊥BC于點(diǎn)F,∴∠GEC=∠ECF=∠CFG=90176。,∴四邊形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一點(diǎn)M,使得AM=BM.設(shè)AN=x.∵∠AGF=105176。,∠FBG=∠FGB=∠ABG=45176。,∴∠AGB=60176。,∠GBN=30176。,∠ABM=∠MAB=15176。,∴∠AMN=30176。,∴AM=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN247。cos30176。=.考點(diǎn):正方形的性質(zhì),矩形的判定和性質(zhì),勾股定理,直角三角形30度的性質(zhì)10.問題探究(1)如圖①,已知正方形ABCD的邊長(zhǎng)為4.點(diǎn)M和N分別是邊BC、CD上兩點(diǎn),且BM=CN,連接AM和BN,交于點(diǎn)P.猜想AM與BN的位置關(guān)系,并證明你的結(jié)論.(2)如圖②,已知正方形ABCD的邊長(zhǎng)為4.點(diǎn)M和N分別從點(diǎn)B、C同時(shí)出發(fā),以相同的速度沿BC、CD方向向終點(diǎn)C和D運(yùn)動(dòng).連接AM和BN,交于點(diǎn)P,求△APB周長(zhǎng)的最大值;問題解決(3)如圖③,AC為邊長(zhǎng)為2的菱形ABCD的對(duì)角線,∠ABC=60176。.點(diǎn)M和N分別從點(diǎn)B、C同時(shí)出發(fā),以相同的速度沿BC、CA向終點(diǎn)C和A運(yùn)動(dòng).連接AM和BN,交于點(diǎn)P.求△APB周長(zhǎng)的最大值.【答案】(1)AM⊥BN,證明見解析;(2)△APB周長(zhǎng)的最大值4+4;(3)△PAB的周長(zhǎng)最大值=2+4.【解析】試題分析:根據(jù)全等三角形的判定SAS證明△ABM≌△BCN,即可證得AM⊥BN;(2)如圖②,以AB為斜邊向外作等腰直角△AEB,∠AEB=90176。,作EF⊥PA于E,作EG⊥PB于G,連接EP,證明PA+PB=2EF,求出EF的最大值即可;(3)如圖③,延長(zhǎng)DA到K,使得AK=AB,則△ABK是等邊三角形,連接PK,取PH=PB,證明PA+PB=PK,求出PK的最大值即可.試題解析:(1)結(jié)論:AM⊥BN.理由:如圖①中,∵四邊形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90176。,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90176。,∴∠ABN+∠BAM=90176。,∴∠APB=90176。,∴AM⊥BN.(2)如圖②中,以AB為斜邊向外作等腰直角三角形△AEB,∠AEB=90176。,作EF⊥PA于E,作EG⊥PB于G,連接EP.∵∠EFP=∠FPG=∠G=90176。,∴四邊形EFPG是矩形,∴∠FEG=∠AEB=90176。,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90176。,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四邊形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周長(zhǎng)的最大值=4+4.(3)如圖③中,延長(zhǎng)DA到K,使得AK=AB,則△ABK是等邊三角形,連接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠APN=∠BAM+∠ABP=∠CBN+∠ABN=60176。,∴∠APB=120176。,∵∠AKB=60176。,∴∠AKB+∠APB=180176。,∴A、K、B、P四點(diǎn)共圓,∴∠BPH=∠KAB=6
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1