freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx全國中考數(shù)學二次函數(shù)的綜合中考模擬和真題匯總附答案(編輯修改稿)

2025-03-30 22:22 本頁面
 

【文章內(nèi)容簡介】 【詳解】解:(1)設(shè)拋物線解析式為y=ax2+bx+c,將點A(1,0),B(4,0),C(0,2)代入解析式,∴,∴,∴y=+x+2;(2)∵點C與點D關(guān)于x軸對稱,∴D(0,2).設(shè)直線BD的解析式為y=kx2.∵將(4,0)代入得:4k2=0,∴k=.∴直線BD的解析式為y=x2.當P點與A點重合時,△BQM是直角三角形,此時Q(1,0);當BQ⊥BD時,△BQM是直角三角形,則直線BQ的直線解析式為y=2x+8,∴2x+8=+x+2,可求x=3或x=4(舍)∴x=3;∴Q(3,2)或Q(1,0);(3)兩個和諧點;AO=1,OC=2,設(shè)A1(x,y),則C1(x+2,y1),O1(x,y1),①當AC1在拋物線上時,∴,∴,∴A1的橫坐標是1;當OC1在拋物線上時,∴,∴A1的橫坐標是;【點睛】本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,軸對稱最短路線問題,等腰三角形的性質(zhì)等;分類討論思想的運用是本題的關(guān)鍵.8.如圖,拋物線y=ax2+bx(a≠0)過A(4,0),B(1,3)兩點,點C、B關(guān)于拋物線的對稱軸對稱,過點B作直線BH⊥x軸,交x軸于點H.(1)求拋物線的表達式;(2)直接寫出點C的坐標,并求出△ABC的面積;(3)點P是拋物線上一動點,且位于第四象限,是否存在這樣的點P,使得△ABP的面積為△ABC面積的2倍?若存在,求出點P的坐標,若不存在,請說明理由;(4)若點M在直線BH上運動,點N在x軸正半軸上運動,當以點C,M,N為頂點的三角形為等腰直角三角形時,請直接寫出此時△CMN的面積. 【答案】(1)y=-x2+4x;(2)C(3,3),面積為3;(3)P的坐標為(5,-5);(4)或5.【解析】試題分析:(1)利用待定系數(shù)法進行求解即可;(2)先求出拋物線的對稱軸,利用對稱性即可寫出點C的坐標,利用三角形面積公式即可求面積;(3)利用三角形的面積以及點P所處象限的特點即可求;(4)分情況進行討論,確定點M、N,然后三角形的面積公式即可求.試題解析:(1)將A(4,0),B(1,3)代入到y(tǒng)=ax2+bx中,得 ,解得 ,∴拋物線的表達式為y=-x2+4x.(2)∵拋物線的表達式為y=-x2+4x,∴拋物線的對稱軸為直線x=2.又C,B關(guān)于對稱軸對稱,∴C(3,3).∴BC=2,∴S△ABC=23=3.(3)存在點P.作PQ⊥BH于點Q,設(shè)P(m,-m2+4m).∵S△ABP=2S△ABC,S△ABC=3,∴S△ABP=6.∵S△ABP+S△BPQ=S△ABH+S梯形AHQP∴6+(m-1)(3+m2-4m)=33+(3+m-1)(m2-4m)整理得m2-5m=0,解得m1=0(舍),m2=5,∴點P的坐標為(5,-5).(4)或5.提示:①當以M為直角頂點,則S△CMN=;②當以N為直角頂點,S△CMN=5;③當以C為直角頂點時,此種情況不存在.【點睛】本題是二次函數(shù)的綜合題,主要考查待定系數(shù)法求解析式,三角形面積、直角三角形的判定等,能正確地根據(jù)題意確定圖形,分情況進行討論是解題的關(guān)鍵.9.已知關(guān)于x的一元二次方程x2﹣(2k+1)x+k2=0有兩個實數(shù)根.(1)求k的取值范圍;(2)設(shè)x1,x2是方程兩根,且,求k的值.【答案】(1)k≥﹣;(2)k=.【解析】【分析】(1)根據(jù)方程有兩個實數(shù)根可以得到△≥0,從而求得k的取值范圍;(2)利用根與系數(shù)的關(guān)系將兩根之和和兩根之積代入代數(shù)式求k的值即可.【詳解】解:(1)△=(2k+1)2﹣4k2=4k2+4k+1﹣4k2=4k+1∵△≥0∴4k+1≥0∴k≥﹣;(2)∵x1,x2是方程兩根,∴x1+x2=2k+1 x1x2=k2,又∵,∴,即 ,解得:,又∵k≥﹣ ,即:k=.【點睛】本題考查了根與系數(shù)的關(guān)系以及一元二次方程的解,根的判別式等知識,牢記“兩根之和等于 ,兩根之積等于”是解題的關(guān)鍵.10.溫州茶山楊梅名揚中國,某公司經(jīng)營茶山楊梅業(yè)務(wù),以3萬元/噸的價格買入楊梅,包裝后直接銷售,包裝成本為1萬元/噸,它的平均銷售價格y(單位:萬元/噸)與銷售數(shù)量x(2≤x≤10,單位:噸)之間的函數(shù)關(guān)系如圖所示.(1)若楊梅的銷售量為6噸時,它的平均銷售價格是每噸多少萬元?(2)當銷售數(shù)量為多少時,該經(jīng)營這批楊梅所獲得的毛利潤(w)最大?最大毛利潤為多少萬元?(毛利潤=銷售總收入﹣進價總成本﹣包裝總費用)(3)經(jīng)過市場調(diào)查發(fā)現(xiàn),楊梅深加工后不包裝直接銷售,平均銷售價格為12萬元/噸.深加工費用y(單位:萬元)與加工數(shù)量x(單位:噸)之間的函數(shù)關(guān)系是y=x+3(2≤x≤10).①當該公司買入楊梅多少噸時,采用深加工方式與直接包裝銷售獲得毛利潤一樣?②該公司買入楊梅噸數(shù)在   范圍時,采用深加工方式比直接包裝銷售獲得毛利潤大些?【答案】(1)楊梅的銷售量為6噸時,它的平均銷售價格是每噸10萬元;(2)當x=8時,此時W最大值=40萬元;(3)①該公司買入楊梅3噸;②3<x≤8.【解析】【分析】(1)設(shè)其解析式為y=kx+b,由圖象經(jīng)過點(2,12),(8,9)兩點,得方程組,即可得到結(jié)論;(2)根據(jù)題意得,w=(y﹣4)x=(﹣x+13﹣4)x=﹣x2+9x,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論;(3)①根據(jù)題意列方程,即可得到結(jié)論;②根據(jù)題意即可得到結(jié)論.【詳解】(1)由圖象可知,y是關(guān)于x的一次函數(shù).∴設(shè)其解析式為y=kx+b,∵圖象經(jīng)過點(2,12),(8,9)兩點,∴,解得k=﹣,b=13,∴一次函數(shù)的解析式為y=﹣x+13,當x=6時,y=10,答:若楊梅的銷售量為6噸時,它的平均銷售價格是每噸10萬元;(2)根據(jù)題意得,w=(y﹣4)x=(﹣x+13﹣4)x=﹣x2+9x,當x=﹣=9時,x=9不在取值范圍內(nèi),∴當x=8時,此時W最大值=﹣x2+9x=40萬元;(3)①由題意得:﹣x2+9x=9x﹣(x+3)解得x=﹣2(舍去),x=3,答該公司買入楊梅3噸;②當該公司買入楊梅噸數(shù)在 3<x≤8范圍時,采用深加工方式比直接包裝銷售獲得毛利潤大些. 故答案為:3<x≤8.【點睛】本題是二次函數(shù)、一次函數(shù)的綜合應(yīng)用題,難度較大.解題關(guān)鍵是理清售價、成本、利潤三者之間的關(guān)系.11.如圖1,在平面直角坐標系中,直線與x軸交于點A,與y軸交于點C,拋物線經(jīng)過A、C兩點,與x軸的另一交點為點B.(1)求拋物線的函數(shù)表達式;(2)點D為直線AC上方拋物線上一動點,①連接BC、CD、BD,設(shè)BD交直線AC于點E,△CDE的面積為S1,△BCE的面積為S2.求:的最大值;②如圖2,是否存在點D,使得∠DCA=2∠BAC?若存在,直接寫出點D的坐標,若不存在,說明理由.【答案】(1);(2)①
點擊復制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1