freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)易錯題精選-二次函數(shù)練習(xí)題及答案解析(編輯修改稿)

2025-03-30 22:21 本頁面
 

【文章內(nèi)容簡介】 線AB的解析式為y=x+3,當(dāng)運動時間為t秒時,點P的坐標(biāo)為(t﹣3,t),點Q的坐標(biāo)為(t,0).當(dāng)點M在線段PQ上時,過點P作PP′⊥x軸于點P′,過點M作MM′⊥x軸于點M′,則△PQP′∽△MQM′,如圖2所示,∵QM=2PM,∴ =,∴QM′=QP39。=2,MM′=PP39。=t,∴點M的坐標(biāo)為(t﹣2, t).又∵點M在拋物線y=x2﹣x上,∴ t=(t﹣2)2﹣(t﹣2),解得:t=;當(dāng)點M在線段QP的延長線上時,同理可得出點M的坐標(biāo)為(t﹣6,2t),∵點M在拋物線y=x2﹣x上,∴2t=(t﹣6)2﹣(t﹣6),解得:t=.綜上所述:當(dāng)運動時間秒 或 時,QM=2PM. 【點睛】本題考查二次函數(shù)綜合運用,綜合能力是解題關(guān)鍵.8.如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)過點A、C、B的拋物線的一部分C1與經(jīng)過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點C的坐標(biāo)為(0,),點M是拋物線C2:(<0)的頂點.(1)求A、B兩點的坐標(biāo);(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;(3)當(dāng)△BDM為直角三角形時,求的值.【答案】(1)A(,0)、B(3,0).(2)存在.S△PBC最大值為 (3)或時,△BDM為直角三角形.【解析】【分析】(1)在中令y=0,即可得到A、B兩點的坐標(biāo).(2)先用待定系數(shù)法得到拋物線C1的解析式,由S△PBC = S△POC+ S△BOP–S△BOC得到△PBC面積的表達(dá)式,根據(jù)二次函數(shù)最值原理求出最大值.(3)先表示出DM2,BD2,MB2,再分兩種情況:①∠BMD=90176。時;②∠BDM=90176。時,討論即可求得m的值.【詳解】解:(1)令y=0,則,∵m<0,∴,解得:,.∴A(,0)、B(3,0).(2)存在.理由如下:∵設(shè)拋物線C1的表達(dá)式為(),把C(0,)代入可得,.∴C1的表達(dá)式為:,即.設(shè)P(p,),∴ S△PBC = S△POC+ S△BOP–S△BOC=.∵0,∴當(dāng)時,S△PBC最大值為.(3)由C2可知: B(3,0),D(0,),M(1,),∴BD2=,BM2=,DM2=.∵∠MBD90176。, ∴討論∠BMD=90176。和∠BDM=90176。兩種情況:當(dāng)∠BMD=90176。時,BM2+ DM2= BD2,即+=,解得:,(舍去).當(dāng)∠BDM=90176。時,BD2+ DM2= BM2,即+=,解得:,(舍去) .綜上所述,或時,△BDM為直角三角形.9.如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3,0),B(1,0),C(0,3)三點.(1)求拋物線的函數(shù)表達(dá)式;(2)如圖1,P為拋物線上在第二象限內(nèi)的一點,若△PAC面積為3,求點P的坐標(biāo);(3)如圖2,D為拋物線的頂點,在線段AD上是否存在點M,使得以M,A,O為頂點的三角形與△ABC相似?若存在,求點M的坐標(biāo);若不存在,請說明理由.【答案】(1)y=﹣x2﹣2x+3;(2)點P的坐標(biāo)為(﹣1,4)或(﹣2,3);(3)存在,(,)或(,),見解析.【解析】【分析】(1)利用待定系數(shù)法,然后將A、B、C的坐標(biāo)代入解析式即可求得二次函數(shù)的解析式;(2))過P點作PQ垂直x軸,交AC于Q,把△APC分成兩個△APQ與△CPQ,把PQ作為兩個三角形的底,通過點A,C的橫坐標(biāo)表示出兩個三角形的高即可求得三角形的面積.(3)通過三角形函數(shù)計算可得∠DAO=∠ACB,使得以M,A,O為頂點的三角形與△ABC相似,則有兩種情況,∠AOM=∠CAB=45176。,即OM為y=x,若∠AOM=∠CBA,則OM為y=3x+3,然后由直線解析式可求OM與AD的交點M.【詳解】(1)把A(﹣3,0),B(1,0),C(0,3)代入拋物線解析式y(tǒng)=ax2+bx+c得,解得,所以拋物線的函數(shù)表達(dá)式為y=﹣x2﹣2x+3.(2)如解(2)圖1,過P點作PQ平行y軸,交AC于Q點,∵A(﹣3,0),C(0,3),∴直線AC解析式為y=x+3,設(shè)P點坐標(biāo)為(x,﹣x2﹣2x+3.),則Q點坐標(biāo)為(x,x+3),∴PQ=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x.∴S△PAC=,∴,解得:x1=﹣1,x2=﹣2.當(dāng)x=﹣1時,P點坐標(biāo)為(﹣1,4),當(dāng)x=﹣2時,P點坐標(biāo)為(﹣2,3),綜上所述:若△PAC面積為3,點P的坐標(biāo)為(﹣1,4)或(﹣2,3),(3)如解(3)圖1,過D點作DF垂直x軸于F點,過A點作AE垂直BC于E點,∵D為拋物線y=﹣x2﹣2x+3的頂點,∴D點坐標(biāo)為(﹣1,4),又∵A(﹣3,0),∴直線AC為y=2x+4,AF=2,DF=4,tan∠PAB=2,∵B(1,0),C(0,3)∴tan∠ABC=3,BC=,sin∠ABC=,直線BC解析式為y=﹣3x+3.∵AC=4,∴AE=AC?sin∠ABC==,BE=,∴CE=,∴tan∠ACB=,∴tan∠ACB=tan∠PAB=2,∴∠ACB=∠PAB,∴使得以M,A,O為頂點的三角形與△ABC相似,則有兩種情況,如解(3)圖2Ⅰ.當(dāng)∠AOM=∠CAB=45176。時,△ABC∽△OMA,即OM為y=﹣x,設(shè)OM與AD的交點M(x,y)依題意得:,解得,即M點為(,).Ⅱ.若∠AOM=∠CBA,即OM∥BC,∵直線BC解析式為y=﹣3x+3.∴直線OM為y=﹣3x,設(shè)直線OM與AD的交點M(x,y).則依題意得:,解得,即M點為(,),綜上所述:存在使得以M,A,O為頂點的三角形與△ABC相似的點M,其坐標(biāo)為(,)或(,).【點睛】本題結(jié)合三角形的性質(zhì)考查二次函數(shù)的綜合應(yīng)用,函數(shù)和幾何圖形的綜合題目,要會利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來,利用點的坐標(biāo)的意義表示線段的長度,從而求出線段之間的關(guān)系.10.已知,m,n是一元二次方程x2+4x+3=0的兩個實數(shù)根,且|m|<|n|,拋物線y=x2+bx+c的圖象經(jīng)過點A(m,0),B(0,n),如圖所示.(1)求這個拋物線的解析式;(2)設(shè)(1)中的拋物線與x軸的另一個交點為拋物線的頂點為D,求出點C,D的坐標(biāo),并判斷△BCD的形狀;(3)點P是直線BC上的一個動點(點P不與點B和點C重合),過點P作x軸的垂線,交拋物線于點M,點Q在直線BC上,距離點P為個單位長度,設(shè)點P的橫坐標(biāo)為t,△PMQ的面積為S,求出S與t之間的函數(shù)關(guān)系式.【答案】(1)
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1