freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx-備戰(zhàn)中考數(shù)學(xué)(二次函數(shù)提高練習(xí)題)壓軸題訓(xùn)練及答案解析(編輯修改稿)

2025-03-30 22:18 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 ;直線a:y=x﹣b與y軸交于點(diǎn)B;拋物線L:y=﹣x2+bx的頂點(diǎn)為C,且L與x軸右交點(diǎn)為D.(1)若AB=8,求b的值,并求此時(shí)L的對(duì)稱(chēng)軸與a的交點(diǎn)坐標(biāo);(2)當(dāng)點(diǎn)C在l下方時(shí),求點(diǎn)C與l距離的最大值;(3)設(shè)x0≠0,點(diǎn)(x0,y1),(x0,y2),(x0,y3)分別在l,a和L上,且y3是y1,y2的平均數(shù),求點(diǎn)(x0,0)與點(diǎn)D間的距離;(4)在L和a所圍成的封閉圖形的邊界上,把橫、縱坐標(biāo)都是整數(shù)的點(diǎn)稱(chēng)為“美點(diǎn)”,分別直接寫(xiě)出b=2019和b=“美點(diǎn)”的個(gè)數(shù).【答案】(1)b=4,(2,﹣2 );(2)1;(3);(4)當(dāng)b=2019時(shí)“美點(diǎn)”的個(gè)數(shù)為4040個(gè),b=“美點(diǎn)”的個(gè)數(shù)為1010個(gè).【解析】【分析】(1)求出A、B 的坐標(biāo),由AB=8,可求出b的值.從而得到L的解析式,找出L的對(duì)稱(chēng)軸與a的交點(diǎn)即可;(2)通過(guò)配方,求出L的頂點(diǎn)坐標(biāo),由于點(diǎn)C在l下方,則C與l的距離,配方即可得出結(jié)論;(3)由題意得y1+y2=2y3,進(jìn)而有b+x0﹣b=2(﹣x02+bx0)解得x0的值,求出L與x軸右交點(diǎn)為D的坐標(biāo),即可得出結(jié)論;(4)①當(dāng)b=2019時(shí),拋物線解析式L:y=﹣x2+2019x直線解析式a:y=x﹣2019,美點(diǎn)”總計(jì)4040個(gè)點(diǎn),②當(dāng)b=,拋物線解析式L:y=﹣x2+,直線解析式a:y=x﹣,“美點(diǎn)”共有1010個(gè).【詳解】(1)當(dāng)x=0吋,y=x﹣b=﹣b,∴B (0,﹣b).∵AB=8,而A(0,b),∴b﹣(﹣b)=8,∴b=4,∴L:y=﹣x2+4x,∴L的對(duì)稱(chēng)軸x=2,當(dāng)x=2時(shí),y=x﹣4=﹣2,∴L的對(duì)稱(chēng)軸與a的交點(diǎn)為(2,﹣2 );(2)y=﹣(x)2,∴L的頂點(diǎn)C(,).∵點(diǎn)C在l下方,∴C與l的距離b(b﹣2)2+1≤1,∴點(diǎn)C與l距離的最大值為1;(3)∵y3是y1,y2的平均數(shù),∴y1+y2=2y3,∴b+x0﹣b=2(﹣x02+bx0),解得:x0=0或x0=b.∵x0≠0,∴x0=b,對(duì)于L,當(dāng)y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得:x1=0,x2=b.∵b>0,∴右交點(diǎn)D(b,0),∴點(diǎn)(x0,0)與點(diǎn)D間的距離b﹣(b).(4)①當(dāng)b=2019時(shí),拋物線解析式L:y=﹣x2+2019x,直線解析式a:y=x﹣2019.聯(lián)立上述兩個(gè)解析式可得:x1=﹣1,x2=2019,∴可知每一個(gè)整數(shù)x的值都對(duì)應(yīng)的一個(gè)整數(shù)y值,且﹣1和2019之間(包括﹣1和﹣2019)共有2021個(gè)整數(shù);∵另外要知道所圍成的封閉圖形邊界分兩部分:線段和拋物線,∴線段和拋物線上各有2021個(gè)整數(shù)點(diǎn),∴總計(jì)4042個(gè)點(diǎn).∵這兩段圖象交點(diǎn)有2個(gè)點(diǎn)重復(fù),∴美點(diǎn)”的個(gè)數(shù):4042﹣2=4040(個(gè));②當(dāng)b=,拋物線解析式L:y=﹣x2+,直線解析式a:y=x﹣,聯(lián)立上述兩個(gè)解析式可得:x1=﹣1,x2=,∴當(dāng)x取整數(shù)時(shí),在一次函數(shù)y=x﹣,y取不到整數(shù)值,因此在該圖象上“美點(diǎn)”為0,在二次函數(shù)y=x2+,當(dāng)x為偶數(shù)時(shí),函數(shù)值y可取整數(shù),可知﹣ 間有1010個(gè)偶數(shù),因此“美點(diǎn)”共有1010個(gè).故b=2019時(shí)“美點(diǎn)”的個(gè)數(shù)為4040個(gè),b=“美點(diǎn)”的個(gè)數(shù)為1010個(gè).【點(diǎn)睛】本題考查了二次函數(shù),熟練運(yùn)用二次函數(shù)的性質(zhì)以及待定系數(shù)法求函數(shù)解析式是解題的關(guān)鍵.9.如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱(chēng)軸l為x=﹣1.(1)求拋物線的解析式并寫(xiě)出其頂點(diǎn)坐標(biāo);(2)若動(dòng)點(diǎn)P在第二象限內(nèi)的拋物線上,動(dòng)點(diǎn)N在對(duì)稱(chēng)軸l上.①當(dāng)PA⊥NA,且PA=NA時(shí),求此時(shí)點(diǎn)P的坐標(biāo);②當(dāng)四邊形PABC的面積最大時(shí),求四邊形PABC面積的最大值及此時(shí)點(diǎn)P的坐標(biāo).【答案】(1)y=﹣(x+1)2+4,頂點(diǎn)坐標(biāo)為(﹣1,4);(2)①點(diǎn)P(﹣﹣1,2);②P(﹣ ,)【解析】試題分析:(1)將B、C的坐標(biāo)代入已知的拋物線的解析式,由對(duì)稱(chēng)軸為即可得到拋物線的解析式;(2)①首先求得拋物線與x軸的交點(diǎn)坐標(biāo),然后根據(jù)已知條件得到PD=OA,從而得到方程求得x的值即可求得點(diǎn)P的坐標(biāo);②,表示出來(lái)得到二次函數(shù),求得最值即可.試題解析:(1)∵拋物線與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱(chēng)軸l為,∴,解得:,∴二次函數(shù)的解析式為=,∴頂點(diǎn)坐標(biāo)為(﹣1,4);(2)令,解得或,∴點(diǎn)A(﹣3,0),B(1,0),作PD⊥x軸于點(diǎn)D,∵點(diǎn)P在上,∴設(shè)點(diǎn)P(x,),①∵PA⊥NA,且PA=NA,∴△PAD≌△AND,∴OA=PD,即,解得x=(舍去)或x=,∴點(diǎn)P(,2);②設(shè)P(x,y),則,∵=OB?OC+AD?PD+(PD+OC)?OD=====,∴當(dāng)x=時(shí),=,當(dāng)x=時(shí),=,此時(shí)P(,).考點(diǎn):1.二次函數(shù)綜合題;2.二次函數(shù)的最值;3.最值問(wèn)題;4.壓軸題.10.如圖①,在平面直角坐標(biāo)系xOy 中,拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn)A(1,0) 、B(3,0) 兩點(diǎn),且與y軸交于點(diǎn)C.(1)求拋物線的表達(dá)式;(2)如圖②,用寬為4個(gè)單位長(zhǎng)度的直尺垂直于x軸,并沿x軸左右平移,直尺的左右兩邊所在的直線與拋物線相交于P、 Q兩點(diǎn)(點(diǎn)P在點(diǎn)Q的左側(cè)),連接PQ,在線段PQ上方拋物線上有一動(dòng)點(diǎn)D,連接DP、DQ.①若點(diǎn)P的橫坐標(biāo)為,求△DPQ面積的最大值,并求此時(shí)點(diǎn)D 的坐標(biāo);②直尺在平移過(guò)程中,△DPQ面積是否有最大值?若有,求出面積的最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.【答案】(1)拋物線y=x2+2x+3;(2)①點(diǎn)D( );②△PQD面積的最大值為8【解析】分析:(1)根據(jù)點(diǎn)A、B的坐標(biāo),利用待定系數(shù)法即可求出拋物線的表達(dá)式;(2)(I)由點(diǎn)P的橫坐標(biāo)可得出點(diǎn)P、Q的坐標(biāo),利用待定系數(shù)法可求出直線PQ的表達(dá)式,過(guò)點(diǎn)D作DE∥y軸交直線PQ于點(diǎn)E,設(shè)點(diǎn)D的坐標(biāo)為(x,x2+2x+3),則點(diǎn)E的坐標(biāo)為(x,x+),進(jìn)而即可得出DE的長(zhǎng)度,利用三角形的面積公式可得出S△DPQ=2x2+6x+,再利用二次函數(shù)的性質(zhì)即可解決最值問(wèn)題;(II)假設(shè)存在,設(shè)點(diǎn)P的橫坐標(biāo)為t,則點(diǎn)Q的橫坐標(biāo)為4+t,進(jìn)而可得出點(diǎn)P、Q的坐標(biāo),利用待定系數(shù)法可求出直線PQ的表達(dá)式,設(shè)點(diǎn)D的坐標(biāo)為(x,x2+2x+3),則點(diǎn)E的坐標(biāo)為(x,2(t+1)x+t2+4t+3),進(jìn)而即可得出DE的長(zhǎng)度,利用三角形的面積公式可得出S△DPQ=2x2+4(t+2)x2t28t,再利用二次函數(shù)的性質(zhì)即可解決最值問(wèn)題.詳解:(1)將A(1,0)、B(3,0)代入y=ax2+bx+3,得:,解得:,∴拋物線的表達(dá)式為y=x2+2x+3.(2)(I)當(dāng)點(diǎn)P的橫坐標(biāo)為時(shí),點(diǎn)Q的橫坐標(biāo)為,∴此時(shí)點(diǎn)P的坐標(biāo)為(,),點(diǎn)Q的坐標(biāo)為(,).設(shè)直線PQ的表達(dá)式為y=mx+n,將P(,)、Q(,)代入y=mx+n,得:,解得:,∴直線PQ的表達(dá)式為y=x+.如圖②,過(guò)點(diǎn)D作DE∥y軸交直線PQ于點(diǎn)E,設(shè)點(diǎn)D的坐標(biāo)為(x,x2+2x+3),則點(diǎn)E的坐標(biāo)為(x,x+),∴DE=x2+2x+3(x+)=x2+3x+,∴S△DPQ=DE?(xQxP)=2x2+6x+=2(x)2+8.∵2<0,∴當(dāng)x=時(shí),△DPQ的面積取最大值,最大值為8,此時(shí)點(diǎn)D的坐標(biāo)為(,).(II)假設(shè)存在
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1