【摘要】第1頁共3頁初中數(shù)學(xué)二次函數(shù)綜合復(fù)習(xí)基礎(chǔ)題一、單選題(共13道,每道8分)的圖象經(jīng)過原點,則a的值必為()或2,作,,的圖象,它們的共同特點是()x軸對稱的拋物線,且y隨x的增大而增大y軸對稱的拋物線,且y隨x
2025-08-01 19:40
【摘要】中考二次函數(shù)綜合壓軸題型歸類一、??键c匯總1、兩點間的距離公式:2、中點坐標(biāo):線段的中點的坐標(biāo)為:直線()與()的位置關(guān)系:(1)兩直線平行且(2)兩直線相交(3)兩直線重合且(4)兩直線垂直3、一元二次方程有整數(shù)根問題,解題步驟如下:①用和參數(shù)的其他要求確定參數(shù)的取值范圍;②解方程,求出方程的根;(兩種形式:分式、二次根式)
2025-04-04 03:00
【摘要】二次函數(shù)知識點總結(jié)及相關(guān)典型題目第一部分基礎(chǔ)知識:一般地,如果是常數(shù),,那么叫做的二次函數(shù).(1)拋物線的頂點是坐標(biāo)原點,對稱軸是軸.(2)函數(shù)的圖像與的符號關(guān)系.①當(dāng)時拋物線開口向上頂點為其最低點;②當(dāng)時拋物線開口向下頂點為其最高點.(3)頂點是坐標(biāo)原點,對稱軸是軸的拋物線的解析式形式為.的圖像是對稱軸平行于(包括重合)軸的拋物線.:的形
2025-04-04 02:44
【摘要】二次函數(shù)中的數(shù)形結(jié)合一、選擇題1.對于二次函數(shù)y=(x﹣1)2+2的圖象,下列說法正確的是( ?。〢.開口向下B.對稱軸是x=﹣1C.頂點坐標(biāo)是(1,2)D.與x軸有兩個交點2.已知二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),且a≠0)的圖象如圖所示,則一次函數(shù)y=cx+與反比例函數(shù)y=在同一坐標(biāo)系內(nèi)
2025-04-04 04:23
【摘要】:一般地,如果是常數(shù),,那么叫做的二次函數(shù).(1)拋物線的頂點是坐標(biāo)原點,對稱軸是軸.(2)函數(shù)的圖像與的符號關(guān)系.①當(dāng)時拋物線開口向上頂點為其最低點;②當(dāng)時拋物線開口向下頂點為其最高點.(3)頂點是坐標(biāo)原點,對稱軸是軸的拋物線的解析式形式為.的圖像是對稱軸平行于(包括重合)軸的拋物線.:的形式,其中.,可分為以下幾種形式:①;②;③;④;⑤.:
2025-08-22 12:02
【摘要】知識框架一、二次函數(shù)的基本形式1.二次函數(shù)基本形式:的性質(zhì):2.的性質(zhì)3.的性質(zhì):4.的性質(zhì):二、二次函數(shù)圖象的平移三、二次函數(shù)與的比較四、二次函數(shù)圖象的畫法五、二次函數(shù)的性質(zhì)六、二次函數(shù)解析式的表示方法七、二次函數(shù)的圖象與各項系數(shù)之間的關(guān)系八、二次函數(shù)圖象的對稱九、二次函數(shù)與一元二次方程:考點一:二次函數(shù)的定義相關(guān)典型例題
2025-04-04 04:24
【摘要】二次函數(shù)知識點總結(jié)及相關(guān)典型題目第一部分基礎(chǔ)知識:一般地,如果是常數(shù),,那么叫做的二次函數(shù).(1)拋物線的頂點是坐標(biāo)原點,對稱軸是軸.(2)函數(shù)的圖像與的符號關(guān)系.①當(dāng)時拋物線開口向上頂點為其最低點;②當(dāng)時拋物線開口向下頂點為其最高點.(3)頂點是坐標(biāo)原點,對稱軸是軸的拋物線的解析式形式為.的圖像是對稱軸平行于(包括重合)軸的拋物線.:的形式,
【摘要】一元二次方程根的分布情況設(shè)方程的不等兩根為且,相應(yīng)的二次函數(shù)為,方程的根即為二次函數(shù)圖象與軸的交點,它們的分布情況見下面各表(每種情況對應(yīng)的均是充要條件)表一:(兩根與0的大小比較即根的正負(fù)情況)分布情況兩個負(fù)根即兩根都小于0兩個正根即兩根都大于0一正根一負(fù)根即一個根小于0,一個大于0大致圖象()得出的結(jié)論大致圖象()
【摘要】第1頁共2頁九年級數(shù)學(xué)二次函數(shù)的實際應(yīng)用(二次函數(shù))基礎(chǔ)練習(xí)試卷簡介:試卷簡介:全卷共2個計算題,7個解答題,分值100分,測試時間60分鐘。本套試卷立足基礎(chǔ),主要考察了學(xué)生對二次函數(shù)在實際應(yīng)用中的運用情況。各個題目難度有階梯性,學(xué)生在做題過程中可以回顧本章知識點,認(rèn)清自己對知識的掌握及靈活運用程度。學(xué)
2025-08-12 19:46