【摘要】1、中考要求:1.經(jīng)歷探索、分析和建立兩個(gè)變量之間的二次函數(shù)關(guān)系的過程,進(jìn)一步體驗(yàn)如何用數(shù)學(xué)的方法描述變量之間的數(shù)量關(guān)系.2.能用表格、表達(dá)式、圖象表示變量之間的二次函數(shù)關(guān)系,發(fā)展有條理的思考和語言表達(dá)能力;能根據(jù)具體問題,選取適當(dāng)?shù)姆椒ū硎咀兞恐g的二次函數(shù)關(guān)系.3.會(huì)作二次函數(shù)的圖象,并能根據(jù)圖象對(duì)二次函數(shù)的性質(zhì)進(jìn)行分析,逐步積累研究函數(shù)性質(zhì)的經(jīng)驗(yàn).
2025-01-10 10:56
【摘要】2014年中考數(shù)學(xué)沖刺復(fù)習(xí)資料:二次函數(shù)壓軸題面積類1.如圖,已知拋物線經(jīng)過點(diǎn)A(﹣1,0)、B(3,0)、C(0,3)三點(diǎn).(1)求拋物線的解析式.(2)點(diǎn)M是線段BC上的點(diǎn)(不與B,C重合),過M作MN∥y軸交拋物線于N,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用m的代數(shù)式表示MN的長(zhǎng).(3)在(2)的條件下,連接NB、NC,是否存在m,使△BNC的面積最大?若存在,求m的值;若不
2025-06-28 09:06
【摘要】......中考二次函數(shù)壓軸題分類匯編1.極值問題=ax2+bx+c的圖象經(jīng)過點(diǎn)(﹣1,4),且與直線y=﹣x+1相交于A、B兩點(diǎn)(如圖),A點(diǎn)在y軸上,過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(﹣3,0).(1)求二次函數(shù)的表達(dá)式;(2
2025-04-07 22:54
【摘要】中考二次函數(shù)壓軸題分類匯編1.極值問題=ax2+bx+c的圖象經(jīng)過點(diǎn)(﹣1,4),且與直線y=﹣x+1相交于A、B兩點(diǎn)(如圖),A點(diǎn)在y軸上,過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(﹣3,0).(1)求二次函數(shù)的表達(dá)式;(2)點(diǎn)N是二次函數(shù)圖象上一點(diǎn)(點(diǎn)N在AB上方),過N作NP⊥x軸,垂足為點(diǎn)P,交AB于點(diǎn)M,求MN的最大值;(3)在(2)的條件下,點(diǎn)N在何位置時(shí),BM與NC相互
【摘要】二次函數(shù)應(yīng)用題利潤(rùn)問題例1、商場(chǎng)促銷,將每件進(jìn)價(jià)為80元的服裝按原價(jià)100元出售,一天可售出140件,后經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),該服裝的單價(jià)每降低1元,其銷量可增加10件現(xiàn)設(shè)一天的銷售利潤(rùn)為y元,降價(jià)x元。(1)求按原價(jià)出售一天可得多少利潤(rùn)?(2)求銷售利潤(rùn)y與降價(jià)x的的關(guān)系式(3)商場(chǎng)要使每天利潤(rùn)為2850元并且使得玩家得到實(shí)惠,應(yīng)該降價(jià)多少元?(4)要使利潤(rùn)最大,則需降價(jià)多少
2025-04-04 04:24
【摘要】題型七二次函數(shù)壓軸題類型一類型二類型三二次函數(shù)綜合的分類討論例1(2022四川達(dá)州)如圖,拋物線經(jīng)過原點(diǎn)O(0,0),點(diǎn)A(1,1),點(diǎn)B72,0.(1)求拋物線解析式;(2)連接OA,過點(diǎn)A作AC⊥OA交拋物線于C,連接OC,求△AOC的面積;(3)點(diǎn)M是y軸右側(cè)拋物線上一
2025-06-12 15:56
【摘要】....北辰教育學(xué)科老師輔導(dǎo)講義學(xué)員姓名:劉海明年級(jí):初三輔導(dǎo)科目:數(shù)學(xué)學(xué)科教師:陸軍授課日期授課時(shí)段17:30—19:30授課主題二次函數(shù)的圖像,性質(zhì)及常規(guī)題型的歸納,填空題18題關(guān)于平
2025-03-24 06:26
【摘要】函數(shù)綜合應(yīng)用題題目分析及題目對(duì)學(xué)生的要求1.求解析式:要求學(xué)生能夠根據(jù)題意建立相應(yīng)坐標(biāo)系,將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題。需要注意的是:(1)不能忘記寫自變量的取值范圍(2)在考慮自變量的取值范圍時(shí)要結(jié)合它所代表的實(shí)際意義。2.求最值:實(shí)際生活中的最值能夠指導(dǎo)人們進(jìn)行決策,這一問要求學(xué)生能夠熟練地對(duì)二次三項(xiàng)式進(jìn)行配方,利用解析式探討實(shí)際問題中的最值問題。最值的求
2025-06-24 06:00
【摘要】1.如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A和點(diǎn)B,其中點(diǎn)A的坐標(biāo)為(﹣2,0),拋物線的對(duì)稱軸x=1與拋物線交于點(diǎn)D,與直線BC交于點(diǎn)E.(1)求拋物線的解析式;(2)若點(diǎn)F是直線BC上方的拋物線上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)F使四邊形ABFC的面積為17,若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由;2.已知在平面直