【摘要】【與名師對話】2021-2021學(xué)年高中數(shù)學(xué)離散型隨機變量的分布列課時作業(yè)新人教A版選修2-31.設(shè)袋中有80個紅球,20個白球,若從袋中任取10個球,則其中恰有6個紅球的概率為()480C610C10100B.C680C410C10100480C620C10100
2024-11-28 00:07
【摘要】離散型隨機變量的方差一般地,若離散型隨機變量X的概率分布為則稱E(X)=x1p1+x2p2+…+xnpn為X的均值或數(shù)學(xué)期望,記為E(X)或μ.Xx1x2…xnPp1p2…pn其中pi≥0,i=1,2,…,n;p1+p2+…+pn=11、離散型隨機變量的均值的定義
2024-11-17 05:48
【摘要】高中新課標(biāo)數(shù)學(xué)選修(2-2)第三章測試題一、選擇題1.0a?是復(fù)數(shù)()zabiab???R,為純虛數(shù)的()A.充分條件但不是必要條件B.必要條件但不是充分條件C.充要條件D.既不是充分也不必要條件答案:B2.若12zi??,23()zaia???R,12
2024-11-15 08:33
2024-11-18 15:23
【摘要】【與名師對話】2021-2021學(xué)年高中數(shù)學(xué)離散型隨機變量課時作業(yè)新人教A版選修2-3一、選擇題1.①某座大橋一天經(jīng)過的中華牌轎車的輛數(shù)為X;②某網(wǎng)站中歌曲《小蘋果》一天內(nèi)被點擊的次數(shù)為X;③一天內(nèi)的溫度為X;④射手對目標(biāo)進行射擊,擊中目標(biāo)得1分,未擊中目標(biāo)得0分,用X表示該射手在一次射擊中的得分.其中X是
【摘要】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)離散型隨機變量學(xué)案新人教A版選修2-3學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時感悟?qū)W習(xí)目標(biāo):1、理解隨機變量及離散型隨機變量的含義;了解隨機變量與函數(shù)的區(qū)別和聯(lián)系;會用離散型隨機變量描述隨機現(xiàn)象。2、通過實例,理解隨機變量與離散性隨機變量的含義,發(fā)展抽象、概括能力,提高實際解決問題的能力。
2024-11-28 02:11
【摘要】離散型隨機變量的期望1、什么叫n次獨立重復(fù)試驗?一.復(fù)習(xí)其中0<p<1,p+q=1,k=0,1,2,...,nP(X=k)=pkqn-kCkn則稱X服從參數(shù)為n,p的二項分布,記作X~B(n,p)一般地,由n次試驗構(gòu)成,且每次試驗互相獨立完成,每次試驗的結(jié)果僅有兩種對立的狀態(tài),即A與,每次試驗中P(A)
【摘要】2.3離散型隨機變量的均值與方差2.3.1離散型隨機變量的均值教學(xué)目標(biāo):知識與技能:了解離散型隨機變量的均值或期望的意義,會根據(jù)離散型隨機變量的分布列求出均值或期望.過程與方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應(yīng)用它們求相應(yīng)的離散型隨機變量
2024-11-20 03:13
【摘要】§隨機變量的數(shù)字特征(三)學(xué)習(xí)目標(biāo)1.理解取有限個值的離散型隨機變量的方差及標(biāo)準(zhǔn)差的概念.2.能計算簡單離散型隨機變量的方差,并能解決一些實際問題.3.掌握方差的性質(zhì),以及兩點分布、二項分布的方差的求法,會利用公式求它們的方差.學(xué)習(xí)過程【任務(wù)一】知識要點1.離散型隨機變量的方差、標(biāo)準(zhǔn)差設(shè)離散型隨機變量X
2024-12-03 11:29
【摘要】第二章,隨機變量及其分布,第一頁,編輯于星期六:點三十五分。,2.2二項分布及其應(yīng)用,2.2.1條件概率,第二頁,編輯于星期六:點三十五分。,課前教材預(yù)案,課堂深度拓展,課末隨堂演練,課后限時作業(yè),第...
2024-10-22 18:56
【摘要】離散型隨機變量的均值1、什么叫n次獨立重復(fù)試驗?一.復(fù)習(xí)其中0<p<1,p+q=1,k=0,1,2,...,nP(X=k)=pkqn-kCkn則稱X服從參數(shù)為n,p的二項分布,記作X~B(n,p)一般地,由n次試驗構(gòu)成,且每次試驗互相獨立完成,每次試驗的結(jié)果僅有兩種對立的狀態(tài),即A與,每次試驗中P(A)
2024-11-18 08:45