【摘要】§導(dǎo)數(shù)的運(yùn)算常見函數(shù)的導(dǎo)數(shù)課時(shí)目標(biāo),進(jìn)一步理解運(yùn)用概念求導(dǎo)數(shù)的方法.見函數(shù)的導(dǎo)數(shù)公式..1.幾個(gè)常用函數(shù)的導(dǎo)數(shù):(kx+b)′=______(k,b為常數(shù));C′=______(C為常數(shù));(x)′=______;(x2)′=______;(x3)′
2024-12-05 09:29
【摘要】第一章綜合能力檢測一、選擇題:本大題共12小題,每小題5分,共60分.1.cosxyx?的導(dǎo)數(shù)是()A.2sinxx?B.sinx?C.2sincosxxxx??D.2coscosxxxx??2.函數(shù)y=sin(π4-x)的導(dǎo)數(shù)為(
2024-11-15 08:33
【摘要】導(dǎo)數(shù)公式【教學(xué)目標(biāo)】能根據(jù)導(dǎo)數(shù)的定義,求函數(shù)cy?,xy?,2xy?,xy1?,xy?的導(dǎo)數(shù)。能利用給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡單函數(shù)的導(dǎo)數(shù)?!窘虒W(xué)重點(diǎn)】常數(shù)函數(shù)、冪函數(shù)的導(dǎo)數(shù)【教學(xué)難點(diǎn)】利用公式求導(dǎo)一、課前預(yù)習(xí)(閱讀教材14--17頁,填寫知識(shí)點(diǎn))__
2024-11-19 10:27
【摘要】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用單調(diào)性教學(xué)目的:;.教學(xué)重點(diǎn):利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性.教學(xué)難點(diǎn):利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性.授課類型:新授課課時(shí)安排:1課時(shí).教具:多媒體、實(shí)物投影儀.內(nèi)容分析:以前,我們用定義來判斷函數(shù)的單調(diào)性.對(duì)于任意的兩個(gè)數(shù)x1,x2∈I,且當(dāng)
2024-12-05 09:20
【摘要】導(dǎo)數(shù)及其應(yīng)用高考題第1題.設(shè)函數(shù)2()ln(23)fxxx???(Ⅰ)討論()fx的單調(diào)性;(Ⅱ)求()fx在區(qū)間3144???????,的最大值和最小值.答案:解:()fx的定義域?yàn)?2?????????,.(Ⅰ)224622(21)(1)()223
2024-12-02 10:13
【摘要】2020/12/2511、最值的概念(最大值與最小值)如果在函數(shù)定義域I內(nèi)存在x0,使得對(duì)任意的x∈I,總有f(x)≤f(x0),則稱f(x0)為函數(shù)f(x)在定義域上的最大值;最值是相對(duì)函數(shù)定義域整體而言的.如果在函數(shù)定義域I內(nèi)存在x0,使得對(duì)任意的x∈I,總有f(x)≥f(x0),則稱f(x0)為
2024-11-18 08:46
【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第2章2導(dǎo)數(shù)的概念及其幾何意義課時(shí)作業(yè)北師大版選修2-2一、選擇題1.設(shè)函數(shù)f(x)在x=x0處可導(dǎo),則當(dāng)h→0時(shí),以下有關(guān)fx0+h-fx0h的值的說法中正確的是()A.與x0,h都有關(guān)B.僅與x0有關(guān)而與h無關(guān)C.僅與h有關(guān)而與x0
2024-12-05 06:27
【摘要】導(dǎo)數(shù)的概念2121f(x)-f(x)y=xx-x11f(x+x)-f(x)=x復(fù)習(xí)割線AB的斜率3、在高臺(tái)跳水運(yùn)動(dòng)中,運(yùn)動(dòng)員相對(duì)于水面的高度h(單位:米)與起跳后的時(shí)間t(單位:秒)存在函數(shù)關(guān)系h(t)=++10.
2024-11-17 12:02
【摘要】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)導(dǎo)數(shù)學(xué)案1新人教A版選修2-2學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時(shí)感悟【學(xué)習(xí)目標(biāo)】1.掌握導(dǎo)數(shù)的概念,導(dǎo)數(shù)公式及計(jì)算,導(dǎo)數(shù)在函數(shù)中的應(yīng)用。能夠用導(dǎo)數(shù)解決生活中的優(yōu)化問題。2.掌握定積分的概念,微積分基本定理及定積分的應(yīng)用?!緦W(xué)習(xí)重點(diǎn)】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用?!緦W(xué)習(xí)難點(diǎn)】導(dǎo)數(shù)在研究函
2024-11-19 17:30
【摘要】1§函數(shù)的極值與導(dǎo)數(shù)學(xué)習(xí)目標(biāo)、極小值,最大值和最小值的概念;、極小值的方法來求函數(shù)的極值;.和步驟.預(yù)習(xí)與反饋(預(yù)習(xí)教材P26~P31,找出疑惑之處)復(fù)習(xí)1:設(shè)函數(shù)y=f(x)在某個(gè)區(qū)間內(nèi)有導(dǎo)數(shù),如果在這個(gè)區(qū)間內(nèi)0y??,那么函數(shù)y=f(x)在這個(gè)區(qū)間內(nèi)為函
2024-11-20 03:14
【摘要】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)教案定積分及其應(yīng)用學(xué)案新人教A版選修2-2學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時(shí)感悟?qū)W習(xí)目標(biāo):1.了解定積分的實(shí)際背景,了解定積分的基本思想,了解定積分的概念。2.了解微積分基本定理。3.加強(qiáng)數(shù)形結(jié)合,化歸思想的應(yīng)用。學(xué)習(xí)重點(diǎn):定積分的幾何意義、基本性質(zhì)、微積分基本定理
【摘要】§學(xué)習(xí)目標(biāo);奎屯王新敞新疆一、預(yù)習(xí)與反饋(預(yù)習(xí)教材P22~P26,找出疑惑之處)復(fù)習(xí)1:以前,我們用定義來判斷函數(shù)的單調(diào)性.對(duì)于任意的兩個(gè)數(shù)x1,x2∈I,且當(dāng)x1<x2時(shí),都有,那么函數(shù)f(x)就是區(qū)間I上的函數(shù).復(fù)習(xí)2:'C?
2024-11-30 14:35