【摘要】導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用新課引入:導(dǎo)數(shù)在實(shí)際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實(shí)際生活中的某些最值問題..(面積和體積等的最值)(利潤方面最值)(功和功率等最值)解函數(shù)應(yīng)用題時,要注意四個步驟:1、閱讀理解,審清題意讀題時要做到逐字逐句,讀懂題中的文字?jǐn)⑹?/span>
2024-11-17 15:20
【摘要】極值點(diǎn)教學(xué)目的:、極小值的概念.、極小值的方法來求函數(shù)的極值.教學(xué)重點(diǎn):極大、極小值的概念和判別方法,以及求可導(dǎo)函數(shù)的極值的步驟.教學(xué)難點(diǎn):對極大、極小值概念的理解及求可導(dǎo)函數(shù)的極值的步驟授課類型:新授課課時安排:1課時教具:多媒體、實(shí)物投影儀內(nèi)容分析:對極大、極小值概念的理
2024-11-20 00:26
【摘要】第5課時導(dǎo)數(shù)的綜合應(yīng)用、極值、最值等..函數(shù)與導(dǎo)數(shù)是高中數(shù)學(xué)的核心內(nèi)容,函數(shù)思想貫穿中學(xué)數(shù)學(xué)全過程.導(dǎo)數(shù)作為工具,提供了研究函數(shù)性質(zhì)的一般性方法.作為“平臺”,可以把函數(shù)、方程、不等式、圓錐曲線等有機(jī)地聯(lián)系在一起,在能力立意的命題思想指導(dǎo)下,與導(dǎo)數(shù)相關(guān)的問題已成為高考數(shù)學(xué)命題的必考考點(diǎn)之一.函數(shù)與方
2024-12-05 06:30
【摘要】導(dǎo)數(shù)的實(shí)際應(yīng)用【教學(xué)目標(biāo)】利用導(dǎo)數(shù)解決實(shí)際問題中的最優(yōu)化問題,掌握建立數(shù)學(xué)模型的方法,形成求解優(yōu)化問題的思路和方法.【教學(xué)重點(diǎn)】實(shí)際問題中的導(dǎo)數(shù)應(yīng)用【教學(xué)難點(diǎn)】數(shù)學(xué)建模一、課前預(yù)習(xí)::31頁例1、例2,總結(jié)利用導(dǎo)數(shù)解決生活中的優(yōu)化問題的一般步驟:例1有一塊邊長為a的正方形鐵板,現(xiàn)從鐵板的四個角各截去一個相同的小正方
2024-12-03 11:30
【摘要】高二數(shù)學(xué)復(fù)習(xí)講義—導(dǎo)數(shù)及其應(yīng)用知識歸納1.導(dǎo)數(shù)的概念函數(shù)y=f(x),如果自變量x在x處有增量,那么函數(shù)y相應(yīng)地有增量=f(x+)-f(x),比值叫做函數(shù)y=f(x)在x到x+之間的平均變化率,即=。如果當(dāng)時,有極限,我們就說函數(shù)y=f(x)在點(diǎn)x處可導(dǎo),并把這個極限叫做f(x)在點(diǎn)x處的導(dǎo)數(shù),記作f’(x)或y’|。即f(x)==。說明:(1)函數(shù)f(x)在點(diǎn)x
2025-08-09 17:07
【摘要】導(dǎo)數(shù)的運(yùn)算練習(xí)與解析1一、選擇題1、已知函數(shù)f(x)在x=1處的導(dǎo)數(shù)為3,則f(x)的解析式可能為()A3(x-1)B.2(x-1)C.2x-1D.x-1解析:求導(dǎo)后帶入驗(yàn)證可得選A.[]2、曲線y=x3在點(diǎn)P處的切線斜率為3,則P點(diǎn)的坐標(biāo)為()A.(-2,-8
2024-12-04 19:53
【摘要】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)導(dǎo)數(shù)學(xué)案2新人教A版選修2-2學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時感悟【學(xué)習(xí)目標(biāo)】1.掌握導(dǎo)數(shù)的概念,導(dǎo)數(shù)公式及計算,導(dǎo)數(shù)在函數(shù)中的應(yīng)用。能夠用導(dǎo)數(shù)解決生活中的優(yōu)化問題。2.掌握定積分的概念,微積分基本定理及定積分的應(yīng)用?!緦W(xué)習(xí)重點(diǎn)】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用?!緦W(xué)習(xí)難點(diǎn)】導(dǎo)數(shù)在研究函數(shù)中
2024-11-19 20:37
【摘要】函數(shù)的最大(小)值與導(dǎo)數(shù)21、函數(shù)的極值設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,?如果對X0附近的所有點(diǎn),都有f(x)f(x0),則f(x0)是函數(shù)f(x)的一個極小值,
2024-11-17 12:01
【摘要】DEABC導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用同步練習(xí)1.一點(diǎn)沿直線運(yùn)動,如果由始點(diǎn)起經(jīng)過t秒后的距離為43215243sttt???,那么速度為零的時刻是()A.1秒末B.0秒C.4秒末D.0,1,4秒末2.某公司在
2024-12-05 09:29
【摘要】2021年1月6日星期W蘇教高中數(shù)學(xué)選修2-2教學(xué)目標(biāo):(1)理解復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則;(2)能運(yùn)用運(yùn)算律進(jìn)行復(fù)數(shù)的四則運(yùn)算;練習(xí):(1+i)2=___;(1-i)2=___;____;11____;11??????iiii.______)
2024-11-30 11:22
【摘要】北師大版高中數(shù)學(xué)選修2-2第三章《導(dǎo)數(shù)應(yīng)用》一、教學(xué)目標(biāo)::(1)了解實(shí)際背景中導(dǎo)數(shù)的含義,體會導(dǎo)數(shù)的思想及其內(nèi)涵在實(shí)際問題中的應(yīng)用;(2)理解世界問題中的具體情境,了解解題思路和方法。2.過程與方法:通過實(shí)際問題,讓學(xué)生進(jìn)一步理解導(dǎo)數(shù)的思想,感知導(dǎo)數(shù)的含義.3.情感.態(tài)度與價值觀:使學(xué)生感受到學(xué)習(xí)導(dǎo)數(shù)的實(shí)際背景,增強(qiáng)學(xué)習(xí)從生
2025-07-18 13:16
【摘要】§導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用學(xué)習(xí)目標(biāo)思維脈絡(luò)1.通過解決利潤最大、用料最省、效率最高等優(yōu)化問題,體會導(dǎo)數(shù)在實(shí)際問題中的作用.2.會用導(dǎo)數(shù)求閉區(qū)間上不超過三次的多項(xiàng)式函數(shù)的最大值、最小值.3.體會導(dǎo)數(shù)方法在研究函數(shù)性質(zhì)中的一般性和有效性.121.生活中的變化率問題在
2024-11-18 00:49
【摘要】圖1導(dǎo)數(shù)在實(shí)際生活的實(shí)際應(yīng)用同步練習(xí)1.一個膨脹中的球形氣球,其體積的膨脹章恒為/s,則當(dāng)其半徑增至m時,半徑的增長率是________.2.將長為a的鐵絲剪成兩段,各圍成長與寬之比為2∶1及3∶2的矩形,那么這兩個矩形面積和的最小值為.3.如圖1,將邊
【摘要】2020/12/24的應(yīng)用導(dǎo)數(shù)公式表及數(shù)學(xué)軟件2020/12/24.,表導(dǎo)數(shù)公式等函數(shù)的的基本初使用下面可以直接今后我們?yōu)榱朔奖?020/12/24式基本初等函數(shù)的導(dǎo)數(shù)公????;xf,cxf.'01??則若??????;nxxf,Nnxxf.n'n12?????則
2024-11-17 05:49
【摘要】高中數(shù)學(xué)選修2-2第一章導(dǎo)數(shù)及其應(yīng)用知識網(wǎng)絡(luò)微積分導(dǎo)數(shù)定積分概念運(yùn)算應(yīng)用函數(shù)的瞬時變化率運(yùn)動的瞬時速度曲線切線的斜率基本初等函數(shù)求導(dǎo)導(dǎo)數(shù)四則運(yùn)算法則簡單復(fù)合函數(shù)求導(dǎo)函數(shù)的單調(diào)性函數(shù)的極值與最值曲線的切線變速
2025-08-05 18:05