【摘要】山東省泰安市肥城市第三中學高中數(shù)學函數(shù)的單調(diào)性與導數(shù)教案學案新人教A版選修2-3學習內(nèi)容學習指導即時感悟【教學目標】1、知識與技能目標:能探索并應(yīng)用函數(shù)的單調(diào)性與導數(shù)的關(guān)系求單調(diào)區(qū)間;能由導數(shù)信息繪制函數(shù)大致圖象。2、過程與方法目標:通過本節(jié)的學習,掌握用導數(shù)研究函數(shù)單調(diào)性的方法。
2024-11-28 00:10
【摘要】“函數(shù)的單調(diào)性”的教學設(shè)計一、教材分析地位與作用:“函數(shù)的單調(diào)性”既是一個重要的數(shù)學概念,又是函數(shù)的一個重要性質(zhì).,在利用函數(shù)觀點解決問題中起著十分重要的作用.重點與難點:重點是函數(shù)的單調(diào)性定義理解(從形到數(shù),從文字語言到符號語言).難點是利用函數(shù)的單調(diào)性定義判斷、證明函數(shù)的單調(diào)性.二、教學目標知識目標:(1)通過已學過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性;(2)學
2025-06-07 23:22
【摘要】第5課時導數(shù)的綜合應(yīng)用、極值、最值等..函數(shù)與導數(shù)是高中數(shù)學的核心內(nèi)容,函數(shù)思想貫穿中學數(shù)學全過程.導數(shù)作為工具,提供了研究函數(shù)性質(zhì)的一般性方法.作為“平臺”,可以把函數(shù)、方程、不等式、圓錐曲線等有機地聯(lián)系在一起,在能力立意的命題思想指導下,與導數(shù)相關(guān)的問題已成為高考數(shù)學命題的必考考點之一.函數(shù)與方
2024-12-05 06:30
【摘要】12???,??th,.,at,,規(guī)律導數(shù)的符號有什么變化地相應(yīng)特點此點附近的圖象有什么是多少呢在此點的導數(shù)函數(shù)那么距水面的高度最大高臺跳水運動員時我們發(fā)現(xiàn)觀察圖?thOa?圖??0th'?單調(diào)遞增??0th'?單調(diào)遞減??0ah'??圖.,值的過程形象解釋
2024-11-18 15:24
【摘要】§函數(shù)的簡單性質(zhì)2.函數(shù)的單調(diào)性(一)一、基礎(chǔ)過關(guān)1.下列函數(shù)中,在(-∞,0]內(nèi)為增函數(shù)的是________.(填序號)①y=x2-2;②y=3x;③y=1+2x;④y=-(x+2)2.2.如果函數(shù)f(x)在[a,b]上是增函數(shù),對于任意的x1,x2∈[a,b]
2024-12-08 20:19
【摘要】江蘇省建陵高級中學2020-2020學年高中數(shù)學導數(shù)在研究函數(shù)在的應(yīng)用(函數(shù)的極值)導學案(無答案)蘇教版選修1-1一:學習目標1.了解函數(shù)極值的概念,會從幾何直觀理解函數(shù)的極值與其導數(shù)的關(guān)系,并會靈活應(yīng)用;2.了解可導函數(shù)在某點取得極值的必要條件和充分條件(導數(shù)在極值點兩側(cè)異號)。二:課前預(yù)習1.函數(shù)a
2024-11-20 00:30
【摘要】函數(shù)的單調(diào)性(二)一、基礎(chǔ)過關(guān)1.函數(shù)y=-x+1在區(qū)間????12,2上的最大值是________.2.函數(shù)y=x+2x-1的最小值為________.3.函數(shù)y=2|x|+1的值域是________.4.函數(shù)f(x)=?????2x+6,x∈[1,2]x+7,
2024-12-08 05:55
【摘要】第三章導數(shù)及其應(yīng)用第8課時函數(shù)的單調(diào)性教學目標:;.教學重點:利用導數(shù)判斷函數(shù)單調(diào)性教學難點:利用導數(shù)判斷函數(shù)單調(diào)性教學過程:Ⅰ.問題情境Ⅱ.建構(gòu)數(shù)學::Ⅲ.數(shù)學應(yīng)用例1:確定函數(shù)f(x)=x2-2x+4
2024-11-19 17:30
【摘要】山東省泰安市肥城市第三中學高中數(shù)學導數(shù)學案2新人教A版選修2-2學習內(nèi)容學習指導即時感悟【學習目標】1.掌握導數(shù)的概念,導數(shù)公式及計算,導數(shù)在函數(shù)中的應(yīng)用。能夠用導數(shù)解決生活中的優(yōu)化問題。2.掌握定積分的概念,微積分基本定理及定積分的應(yīng)用?!緦W習重點】導數(shù)在研究函數(shù)中的應(yīng)用?!緦W習難點】導數(shù)在研究函數(shù)中
2024-11-19 20:37
【摘要】【成才之路】2021-2021學年高中數(shù)學第3章1第1課時導數(shù)與函數(shù)的單調(diào)性課時作業(yè)北師大版選修2-2一、選擇題1.函數(shù)y=xlnx+m的單調(diào)遞增區(qū)間是()A.(1e,+∞)B.(0,e)C.(0,1e)D.(1e,e)[答案]A[解析]定義域為{x|x0}
2024-12-05 06:27
【摘要】1.3.2函數(shù)的極值與導數(shù)(1)一、教學目標:理解函數(shù)的極大值、極小值、極值點的意義.掌握函數(shù)極值的判別方法.進一步體驗導數(shù)的作用.二、教學重點:求函數(shù)的極值.教學難點:嚴格套用求極值的步驟.三、教學過程:(一)函數(shù)的極值與導數(shù)的關(guān)系1、觀察下圖中的曲線a點的函數(shù)值f(a)比它臨近點的函數(shù)值都大.b點的函數(shù)值f(
2024-11-19 22:43
【摘要】第1章導數(shù)及其應(yīng)用第1課時平均變化率教學過程一、問題情境現(xiàn)有某市某年3月和4月某天日最高氣溫記載如下:時間3月18日4月18日4月20日日最高氣溫℃℃℃“氣溫陡增”這一句生活用語,用數(shù)學方法
2024-12-04 20:36