【摘要】一、課題:函數(shù)的單調(diào)性二、教學(xué)目標(biāo)1、知識目標(biāo):從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法.2、能力目標(biāo):通過對函數(shù)單調(diào)性定義的探究,培養(yǎng)學(xué)生滲透數(shù)形結(jié)合數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語言表達(dá)能力;通過對函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力.3、情感目標(biāo):通過對單調(diào)性的探究培養(yǎng)學(xué)生細(xì)心觀
2025-06-07 16:29
【摘要】單調(diào)性與最大(?。┲档谝徽n時(shí)函數(shù)單調(diào)性的概念問題提出德國有一位著名的心理學(xué)家艾賓浩斯,對人類的記憶牢固程度進(jìn)行了有關(guān)研究.他經(jīng)過測試,得到了以下一些數(shù)據(jù):時(shí)間間隔t剛記憶完畢20分鐘后60分鐘后8-9小時(shí)后1天后2天后6天后
2025-07-18 14:14
【摘要】函數(shù)的單調(diào)性?1.函數(shù)單調(diào)性的判定.?2.函數(shù)單調(diào)性的證明.?3.函數(shù)單調(diào)性的應(yīng)用.?1.利用已知函數(shù)的單調(diào)性?2.利用函數(shù)圖象?3.復(fù)合函數(shù)的判定方法?4.利用定義一.函數(shù)單調(diào)性的判定方法:例f(x)在實(shí)數(shù)集上是減函數(shù),求f(2x-x2)的單調(diào)區(qū)間以及單調(diào)性
2024-11-07 00:42
【摘要】函數(shù)的單調(diào)性與導(dǎo)數(shù)為常數(shù))????(x)x)(2(1'??1)a0,lna(aa)a)(3(x'x???且1)a,0a(xlna1)xlog)(4('a???且sinx(8)(cosx)'??e)e)(5(x'x?x1(6)(l
2024-11-17 15:36
【摘要】函數(shù)的單調(diào)性與二次函數(shù)重難點(diǎn)知識歸納(一)函數(shù)的單調(diào)性1、單調(diào)增函數(shù)的定義:在函數(shù)y=f(x)的定義域內(nèi)的一個(gè)區(qū)間A上,如果對于任意兩數(shù)x1,x2∈A,當(dāng)x1x2時(shí),都有f(x1)f(x2),那么,就稱函數(shù)y=f(x)在區(qū)間A上是增加的,有時(shí)也稱函數(shù)y=f(x)在區(qū)間A上是遞增的.2、單調(diào)減函數(shù)的定義:在函數(shù)y=f(x)的定義域內(nèi)的一個(gè)區(qū)間A上,如果對于任意兩
2025-06-18 20:41
【摘要】:對任意的有,則下列說法一定正確的是(C)A.為奇函數(shù) B.為偶函數(shù) C.為奇函數(shù) D.為偶函數(shù),且,則不等式的解集為()A. B.C.D.3.定義在R上的函數(shù)y=f(x),f(0)≠0,當(dāng)x0時(shí),f(x)1,且對任意的a、b∈R,有f(a+b)=f(a)f(b),(1)求證:f(0)=1;(2)求證:對任意的x∈R,恒有f(x)
2025-08-04 15:26
【摘要】導(dǎo)數(shù)與函數(shù)的單調(diào)性、極值、最值適用學(xué)科高中數(shù)學(xué)適用年級高中三年級適用區(qū)域通用課時(shí)時(shí)長(分鐘)60知識點(diǎn)函數(shù)的單調(diào)性函數(shù)的極值函數(shù)的最值教學(xué)目標(biāo)掌握函數(shù)的單調(diào)性求法,會求函數(shù)的函數(shù)的極值,會求解最值問題,教學(xué)重點(diǎn)會利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性,會求解函數(shù)的最值。教學(xué)難點(diǎn)熟練掌握函數(shù)的單調(diào)性、極值、最值的求法,以及分類討論思想的應(yīng)用
2025-07-26 05:39
【摘要】§1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)(第1課時(shí))教學(xué)目標(biāo)1.了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系;2.能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,掌握求函數(shù)(對多項(xiàng)式函數(shù)一般不超過三次)的單調(diào)區(qū)間;教學(xué)重點(diǎn)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項(xiàng)式函數(shù)的單調(diào)區(qū)間教學(xué)難點(diǎn)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項(xiàng)式函數(shù)的單調(diào)區(qū)間教學(xué)方法講練結(jié)合法教學(xué)用具小
2025-04-16 22:05
【摘要】函數(shù)的單調(diào)性學(xué)習(xí)目標(biāo)了解函數(shù)單調(diào)性的概念掌握判斷一些簡單函數(shù)單調(diào)性的方法教學(xué)方法講解法、練習(xí)法相結(jié)合本節(jié)重點(diǎn),難點(diǎn)函數(shù)單調(diào)性的定義證明函數(shù)單調(diào)性的方法步驟y=x2從圖象可以看到:圖象在y軸的右側(cè)部分是上升的,也就是說,當(dāng)x在區(qū)間[0,+)上取值時(shí),隨著x的增大
2025-08-04 14:16
【摘要】單調(diào)性與最大(小)值第三課時(shí)函數(shù)的最值問題提出?,如果函數(shù)的圖象存在最高點(diǎn)或最低點(diǎn),它又反映了函數(shù)的什么性質(zhì)?知識探究(一)觀察下列兩個(gè)函數(shù)的圖象:圖1ox0xMy思考1:這兩個(gè)函數(shù)圖象有何共同特征?yxox0圖2MAB
2024-11-10 08:36
【摘要】第一篇:函數(shù)的單調(diào)性與導(dǎo)數(shù)課后反思 課后反思 : 教學(xué)過程中教師指導(dǎo)啟發(fā)學(xué)生以已知的熟悉的二次函數(shù)為研究的起點(diǎn),發(fā)現(xiàn)函數(shù)的導(dǎo)數(shù)的正負(fù)與函數(shù)單調(diào)性的關(guān)系,從而到更多的,更復(fù)雜的函數(shù),從中發(fā)現(xiàn)規(guī)律,...
2024-11-04 01:27
【摘要】......函數(shù)的單調(diào)性與最值復(fù)習(xí):按照列表、描點(diǎn)、連線等步驟畫出函數(shù)的圖像.圖像在軸的右側(cè)部分是上升的,當(dāng)在區(qū)間[0,+)上取值時(shí),隨著的增大,相應(yīng)的值也隨著增大,如果取∈[0,+),得到,,那么當(dāng)<
2025-05-16 01:56