freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

函數(shù)的單調(diào)性(存儲版)

2024-11-04 01:37上一頁面

下一頁面
  

【正文】 (x)=ax+1(a0),g(x)=x+bx2當(dāng)a=4b時,求函數(shù)f(x)+g(x)的單調(diào)區(qū)間,并求其在區(qū)間(165。)上單調(diào)遞增 2a0a2時,f(x)在[0,)上單調(diào)遞減a2af(x)在(,+165。)上存在單調(diào)遞增區(qū)間,求a的取值范圍;316(2)當(dāng)0a2時,f(x)在[1,4]上的最小值為,求3f(x)在該區(qū)間上的最大值。單調(diào)性是對函數(shù)概念的延續(xù)和擴(kuò)展,也是我們后續(xù)研究函數(shù)的基礎(chǔ),可以說,起到了承上啟下的作用。的圖象的對應(yīng)值表,當(dāng)x從0到5上變化時,y是如何變化的。變形。第五篇:專題:函數(shù)單調(diào)性的證明函數(shù)單調(diào)性的證明函數(shù)的單調(diào)性需抓住單調(diào)性定義來證明,這是目前高一階段唯一的方法。:f(x)在(0,+∞):已知函數(shù)f(x)對于任意的x、y∈R,f(x)+f(y)=f(x+y),且當(dāng)x>0時,f(x)<0;f(1)=(x)>f(x)>總有(1)求證:f(x)在R上是減函數(shù)(2)求f(x)在[3,3]上的最大值與最小值已知函數(shù)f(x)的定義域為R,且m、n∈R,恒有f(m)+f(n)=f(m+n)+1,且f231。1時,f(x)>(1)求證:f(x)是單調(diào)遞增函數(shù)(2)求f(x)在[2,2]、定義在R上的函數(shù)f(x)恒為正,且滿足f(x+y)=f(x)f(y),當(dāng)x>0時,f(x)>1.(1)證明:f(x)(2)若函數(shù)f(x)的定義域為[1,1]時,解不等式fx1>f(2x)()函數(shù)f(x)的定義域為R,對于任意的a、b∈R皆有f(a)+f(b)=f(a+b)+1,且x>0時,f(x)>1(1)求證:f(x)是R上的增函數(shù)2(2)若f(4)=5,解不等式f3mm2<3()3。)單調(diào)遞增 練習(xí):證明函數(shù)f(x)=x+(a>0)在(a,討論函數(shù)f(x)=1+xx的單調(diào)性2ax(二)f(x)抽象函數(shù)的單調(diào)性:抽象函數(shù)的單調(diào)性關(guān)鍵是抽象函數(shù)關(guān)系式的運用,同時,要注意選擇作差還是作商,這一點可觀察題意中與0比較,應(yīng)作差;與1比較,應(yīng)作商。怎樣用定義證明函數(shù)的單調(diào)性?三個問題進(jìn)行闡述,牢固學(xué)生記憶和理解。講解完例題后,引導(dǎo)學(xué)生歸納用定義法正明一段區(qū)間的單調(diào)性的方法:設(shè)元。(二)給出定義。(2)若m0,求函數(shù)f(x)在區(qū)間[m,m]上的最大值.【題】已知函數(shù)【難度】***32f(x)=x2+ax3a2lnx(1)討論f(x)的單調(diào)性。R),32g(x)=fx()f+x162。0,a01+x(1)求f(x)的單調(diào)區(qū)間;(2)若f(x)的最小值為1,求a的取值范圍.【答案】:a179。)=k(2)①k1,f(x)min【解析】:(1)②k③1163。x1【難度】** 【題】討論函數(shù)f(x)=【難度】*** 【題】求函數(shù)f(x)=e(xax+1)(x1,a206?!绢}】判斷函數(shù)f(x)=x+4x+alnx的單調(diào)性。對參數(shù)的所有可能取值都要寫出,對應(yīng)結(jié)論相同的時候,參數(shù)范圍必須合并。(i)定義域內(nèi)沒有根,寫出數(shù)f162。(x)=0是否有根。(x);2)求方程f39。教師應(yīng)適時指出這種驗證也有局限性,然后再讓學(xué)生思考怎樣做才能實現(xiàn)“任意性”就有堅實的基礎(chǔ)了。這其中有兩個難點:(1)“x增大”如何用符號表示;同樣,“f(x)增大”如何用符號表示。這個觀念對他們而言是易于接受的,很形象,他們會覺得這樣的定義很好,為什么還要費神去進(jìn)行符號化呢?如果教師能通過教學(xué)設(shè)計,讓學(xué)生感受到進(jìn)一步符號化、形式化的必要性,造成認(rèn)知沖突,則學(xué)生研究的興趣就會大大提高,主動性也會更強(qiáng)。就中小學(xué)生與單調(diào)性相關(guān)的經(jīng)歷而言,學(xué)生認(rèn)識函數(shù)單調(diào)性可以分為四個階段: 第一階段,經(jīng)驗感知階段(小學(xué)階段),知道一個量隨另一個量的變化而變化的具體情境,如“隨著年齡的增長,我的個子越來越高”,“我認(rèn)識的字越多,我的知識就越多”等。關(guān)鍵點1。例2主要對數(shù)形結(jié)合,定義法證明函數(shù)的單調(diào)性的只是鞏固與應(yīng)用.(四)歸納小結(jié),提高認(rèn)識歸納小結(jié)是鞏固新知識不可或缺的環(huán)節(jié)之一,本節(jié)課我采用組織和指導(dǎo)學(xué)生自己談學(xué)習(xí)收獲的方式對所學(xué)知識進(jìn)行歸納,深化對數(shù)學(xué)思想方法的認(rèn)識,為后續(xù)學(xué)習(xí)打好基礎(chǔ)(1(本節(jié)小結(jié)函數(shù)單調(diào)性定義,判斷函數(shù)單調(diào)性的方法(圖像、定義)在方法層面上,引導(dǎo)學(xué)生回顧判斷,證明函數(shù)單調(diào)性的方法和步驟。例2 畫出函數(shù)的圖像,判斷它的單調(diào)性,并加以證明。體現(xiàn)從簡單到復(fù)雜、具體到抽象的認(rèn)知過程。【設(shè)計意圖】 新課標(biāo)十分注重初中與高中的銜接,注重通過函數(shù)的圖像,研究函數(shù)的基本性質(zhì)。鞏固提高,深化概念。二、教法與學(xué)法 1(教學(xué)方法 本節(jié)課是函數(shù)單調(diào)性的起始課,根據(jù)教學(xué)內(nèi)容、教學(xué)目標(biāo)和學(xué)生的認(rèn)知水平,本節(jié)課主要采用“創(chuàng)設(shè)情景、問題探究、合作交流、歸納總結(jié)、聯(lián)系鞏固”的教學(xué)方式,這樣既增加了教師與學(xué)生、學(xué)生與學(xué)生之間的交流,又能激發(fā)學(xué)生的求知欲,調(diào)動學(xué)生積極性,使他們思路更加開闊,思維更加敏捷。教學(xué)目標(biāo)知識與技能:理解函數(shù)單調(diào)性和單調(diào)函數(shù)的意義。而我們今天學(xué)習(xí)的內(nèi)容就是函數(shù)基本性質(zhì)中的一種——單調(diào)性。第一篇:函數(shù)的單調(diào)性函數(shù)的單調(diào)性說課稿(市級一等獎)函數(shù)單調(diào)性說課稿 《函數(shù)的單調(diào)性》說課稿(市級一等獎)旬陽縣神河中學(xué) 詹進(jìn)根我說課的課題是《普通高中課程標(biāo)準(zhǔn)實驗教科書 必修1》第二章第三節(jié)——函數(shù)的單調(diào)性。函數(shù)的基本性質(zhì)包括單調(diào)性、奇偶性、周期性、對稱性、有界性。根據(jù)函數(shù)單調(diào)性在整個教材內(nèi)容中的地位和作用,并結(jié)合學(xué)生的認(rèn)知水平,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下教學(xué)目標(biāo)。1 函數(shù)單調(diào)性說課稿 教學(xué)難點: 根據(jù)定義證明函數(shù)的單調(diào)性和利用函數(shù)圖像證明單調(diào)性。歸納探索,形成概念。讓學(xué)生大膽的去說,x 老師逐步修正、完善學(xué)生的說法,最后給出正確答案?!驹O(shè)計意圖】通過問題的分解,引導(dǎo)學(xué)生步步深入,直至找到最準(zhǔn)確的數(shù)學(xué)語言來描述定義。(5)函數(shù)在上都是減函數(shù),所以在上是減函數(shù)。例1主要是從圖形上判斷函數(shù)的單調(diào)性。最近,在我區(qū)“青年教師評優(yōu)課”上,聽了多名教師對這節(jié)課不同風(fēng)格的課堂教學(xué),通過對他們教學(xué)案例的研究和思考,筆者認(rèn)為,在函數(shù)單調(diào)性概念的教學(xué)中,關(guān)鍵是把握住如下三個關(guān)鍵點。至于在多種函數(shù)性質(zhì)中,選擇這個時機(jī)來討論函數(shù)的單調(diào)性而不是其他性質(zhì),是因為函數(shù)的單調(diào)性是學(xué)生從已經(jīng)學(xué)習(xí)的函數(shù)中比較容易發(fā)現(xiàn)的一個性質(zhì)。學(xué)生在初中已經(jīng)接觸過一次函數(shù)、反比例函數(shù)、二次函數(shù),對函數(shù)的增減性已有初步的認(rèn)識:隨x增大y增大是增函數(shù),隨x增大y 減小是減函數(shù)。后一過程的進(jìn)行則有相當(dāng)?shù)碾y度,其難就難在用數(shù)學(xué)的符合語言來描述函數(shù)單調(diào)性的定義時,如何才能最大限度地通過學(xué)生自己的思維活動來完成。例如,指出回答②試圖用自然數(shù)列來驗證結(jié)論,而且引入了不等式表示不等關(guān)系,但是,只是對有限幾個自然數(shù)驗證不行,只有當(dāng)所有的比較結(jié)果都是一樣的:自變量大時,函數(shù)值也大,才可以證明它是增函數(shù),那么怎么辦?如果有的學(xué)生提出:引入非負(fù)實數(shù)a,只要證明就可以了,這就把驗證的范圍由有限擴(kuò)大到了無限。(x)的符號判定函數(shù)f(x)、函數(shù)的極值求函數(shù)的極值的三個基本步驟1)求導(dǎo)數(shù)f39。(x)的最簡潔、直觀的形式;“0”或“0”時,把最高次項系數(shù)外f162。流程③:判斷由②得出的根是否在定義域內(nèi)。3)第三步:(3)寫綜上所述。(x)在每個區(qū)間的正負(fù)號,求出相應(yīng)的單調(diào)區(qū)間。22【難度】***ekx【題】討論函數(shù)f(x)=的單調(diào)性。,k1)減(k1,+165。aef(x=m)axaf=(e),ef(x)minln2a =f(2a)=2af=(e)e,e④a2時,f(xm)a=x2f(x)min=f(a)=lna【難度】*** 【點評】1x【題】、已知函數(shù)f(x)=ln(ax+1)+,x179。e時,f(x)min=e(a+1) 【難度】***aeaxf(x)=3x+1(a0),g(x)=x9x,若f(x)+g(x) 【題】已知函數(shù)【難度】***【題】已知函數(shù)23f(x)=ax+x+bx(其中常數(shù)a,b206。[
點擊復(fù)制文檔內(nèi)容
物理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1