【摘要】【金榜教程】2021年高中數(shù)學(xué)平面向量基本定理檢測試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)O是△ABC所在平面內(nèi)一點,D為BC邊中點,且2OAOBOC0???,那么()(A)AOOD?(B)AO2OD?(C)AO3OD?(D)2A
2025-11-24 03:14
【摘要】EFDCBA陜西省商南縣高級中學(xué)高一第二學(xué)期平面向量單元練習(xí)1.平面向量及其線性運算,正確的是()A.若cbba//,//,則ca//B.對于任意向量ba,,有baba???C.若ba?,則ba?或ba??D.對于任意向量ba,,有baba???2.(
2025-11-21 11:35
【摘要】陜西省榆林育才中學(xué)高中數(shù)學(xué)第2章《平面向量》10平面向量數(shù)量積的坐標(biāo)表示導(dǎo)學(xué)案北師大版必修4使用說明96頁到第97頁內(nèi)容,完成預(yù)習(xí)引導(dǎo)的全部內(nèi)容.,大膽展示,充分發(fā)揮學(xué)習(xí)小組的高效作用,完成合作探究部分.學(xué)習(xí)目標(biāo)1.掌握數(shù)量積的坐標(biāo)表達(dá)式,會進(jìn)行平面向量數(shù)量積的運算.2.理解掌握向量的模、夾角等公式;
2025-11-10 23:19
【摘要】從力做功到向量的數(shù)量積【學(xué)習(xí)目標(biāo)】(1)理解平面向量數(shù)量積的含義及其物理意義、幾何意義.(2)體會平面向量的數(shù)量積與向量投影的關(guān)系.(3)掌握平面向量數(shù)量積的運算律和它的一些簡單應(yīng)用.(4)能運用數(shù)量積表示兩個向量的夾角,會用數(shù)量積判斷兩個平面向量的垂直關(guān)系.【學(xué)習(xí)重點】向量數(shù)量積的含義及其物理意義、幾何意義;
2025-11-25 23:43
【摘要】平面向量數(shù)量積的坐標(biāo)表示教學(xué)目標(biāo)1.正確理解掌握兩個向量數(shù)量積的坐標(biāo)表示方法,能通過兩個向量的坐標(biāo)求出這兩個向量的數(shù)量積.2.掌握兩個向量垂直的坐標(biāo)條件,能運用這一條件去判斷兩個向量垂直.3.能運用兩個向量的數(shù)量積的坐標(biāo)表示去解決處理有關(guān)長度、角度、垂直等問題.重點:兩個向量數(shù)量積的坐標(biāo)表示,向量的長度公式,兩個向量垂直的充要條件.難點
2025-11-10 20:36
【摘要】平面向量,設(shè)a=(x1,y1),b=(x2,y2),為實數(shù)。(1)向量式:a∥b(b≠0)a=b;(2)坐標(biāo)式:a∥b(b≠0)x1y2-x2y1=0;,設(shè)a=(x1,y1),b=(x2,y2),(1)向量式:a⊥b(b≠0)ab=0;(2)坐標(biāo)式:a⊥bx1x2+y1y2=0;=(x1,y1),b=(x2,y2),則ab==x1x2+y1y2;其幾何意義是ab等于a的長度與b
2025-04-04 05:05
【摘要】陜西省榆林育才中學(xué)高中數(shù)學(xué)第2章《平面向量》5從速度的倍數(shù)到數(shù)乘向量(2)導(dǎo)學(xué)案北師大版必修4使用說明1.課前根據(jù)學(xué)習(xí)目標(biāo),認(rèn)真閱讀課本第83頁到第84頁內(nèi)容,完成預(yù)習(xí)引導(dǎo)的全部內(nèi)容.(最好在課前完成討論)發(fā)揮學(xué)習(xí)小組作用,積極討論,大膽展示,完成合作探究部分.學(xué)習(xí)目標(biāo).,并能運用基底表示平面內(nèi)
【摘要】章末過關(guān)檢測卷(二)第2章平面向量(測試時間:120分鐘評價分值:150分)一、選擇題(本大題共10小題,每小題5分,共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.(2021·遼寧卷)已知點A(1,3),B(4,-1),則與向量AB→同方向的單位向量
2025-11-26 10:15
【摘要】第二章平面向量平面向量的實際背景及基本概念1.了解向量的實際背景,以位移、力等物理背景抽象出向量.(重點)2.理解向量、相等向量的概念及向量的幾何表示.(難點)3.掌握向量的概念及共線向量的概念.(重點、易混點)1.向量的概念向量的兩個要素:(1)大?。?2)______.2.向
2025-11-10 19:09
【摘要】第二章平面向量平面向量的基本定理及坐標(biāo)表示平面向量共線的坐標(biāo)表示1.通過實例了解如何用坐標(biāo)表示兩個共線向量,以及兩直線平行與兩向量共線的判定.(易混點)2.理解用坐標(biāo)表示的平面向量共線的條件,并會應(yīng)用.(重點)3.會根據(jù)平面向量的坐標(biāo)判斷向量是否共線.(難點)1.平面向量共線的坐標(biāo)表示2
【摘要】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)平面向量線性運算的坐標(biāo)表示課后訓(xùn)練北師大版必修4"1.已知a=(1,1),b=(1,-1),則向量1322?ab等于().A.(-2,-1)B.(-2,1)C.(-1,0)D.(-1,2)2.若AB
【摘要】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)積的坐標(biāo)表示課后訓(xùn)練北師大版必修4"1.已知向量a=(x-1,2),b=(2,1),則a⊥b的充要條件是().A.x=12?B.x=-1C.x=5D.x=02.若a=(2,3),b=(-4,7)
2025-11-24 03:13
【摘要】平面向量應(yīng)用舉例平面幾何中的向量方法問題提出t57301p2???????,使得向量可以進(jìn)行線性運算和數(shù)量積運算,并具有鮮明的幾何背景,從而溝通了平面向量與平面幾何的內(nèi)在聯(lián)系,在某種條件下,平面向量與平面幾何可以相互轉(zhuǎn)化.、垂直、夾角、距離、全等、相似等,是平面幾何中常見的問題,而這些問題都可以由
2025-11-08 12:03
【摘要】平面向量應(yīng)用易錯辯析運用向量知識解題??墒盏交睘楹?、化難為易的神奇功效,隨著新教材的逐步實施,它已成為高考數(shù)學(xué)的新寵。但學(xué)生在初學(xué)這部分內(nèi)容時,往往會出現(xiàn)這樣或那樣的錯誤,現(xiàn)列舉幾種常見錯誤,以期起到防患于未然的作用。一、忽略共線向量致誤例1、已知同一平面上的向量a、b、c兩兩所成的角相等,并且1||?a,2||?b,3||
2025-11-26 01:51
【摘要】雙基限時練(二十)向量平行的坐標(biāo)表示一、選擇題1.已知a=(-1,2),b=(2,y),若a∥b,則y的值是()A.1B.-1C.4D.-4解析由a∥b,得(-1)·y=2·2=4,∴y=-4,故選D.答案D2.已知A(k,1
2025-11-25 23:45