【摘要】第3課時平面向量的數量積基礎過關1.兩個向量的夾角:已知兩個非零向量和,過O點作=,=,則∠AOB=θ(0°≤θ≤180°)叫做向量與的.當θ=0°時,與;當θ=180°時,與;如果與的夾角是90°,我們說與垂直,記作.2.兩個向量的數量積的定義:已知兩
2025-06-08 00:02
【摘要】OxyijaA(x,y)a兩者相同3.兩個向量相等的充要條件,利用坐標如何表示?坐標(x,y)一一對應向量a1.以原點O為起點作OA=a,點A的位置由誰確定?2.點A的坐標與向量a的坐標有什么關系?由a唯一確定a=bx1=x2且y1=y2
2025-08-05 06:17
【摘要】平面幾何中的向量方法學習目標、垂直、相等、夾角和距離等問題.——向量法和坐標法.,體驗向量在解決幾何問題中的工具作用,培養(yǎng)創(chuàng)新精神.合作學習一、設計問題,創(chuàng)設情境問題1:若O為△ABC重心,則=.問題2:水渠橫斷面是四邊形ABCD,,且||=||,則這個四邊形為.
2025-11-10 20:38
【摘要】課題平面向量基本定理教學目標知識與技能理解平面向量基本定理的內容,了解向量一組基底的含義過程與方法在平面內,當一組基底選定后,會用這組基底來表示其他向量情感態(tài)度價值觀啟發(fā)引導,講練結合重點會應用平面向量基本定理解決有關平面向量的綜合問題難點同上教學設
【摘要】平面向量應用舉例命題方向1向量在平面幾何中的應用例1求證:直徑所對的圓周角為直角.[分析]本題實質就是證明AB→2BC→=0.[證明]設AO→=a,OB→=b,則AB→=a+b,OC→=a,BC→=a-b,|a|=|b|.
2025-11-10 19:09
【摘要】自學目標1、在理解向量共線的概念的基礎上,學習用坐標表示向量共線的條件。2、利用向量共線的坐標表示解決有關問題。學習過程一、課前準備(預習教材103頁~104頁,找出疑惑之處)二、新課導學1、若//(0)abb?則存在唯一實數?使;反之,若存在唯一實數?,使,則//
2025-11-18 23:46
【摘要】高中數學:《平面向量數量積的物理背景及其含義》課件(新人教A版必修4)平面向量的數量積的物理背景及其含義目標導學:1、能運用數量積表示兩個向量的夾角,計算向量的長度;2、會用數量積判斷兩個平面向量的垂直關系。向量的夾角:已知兩個非零向量和,作,
2025-07-20 04:53
【摘要】平面向量的坐標運算a-b),(2211baba???),(2211baba???a+b12(,)aaa????1212xxabyy???????一一對應一一對應點AOA向量(,)xy坐標1122+eeaaa?12(,)aaa?1
2025-07-20 05:00
【摘要】§2.平面向量的正交分解及坐標表示【學習目標、細解考綱】1、理解平面向量的正交分解。2、聯系直角坐標系,研究向量正交分解的坐標運算?!局R梳理、雙基再現】1、平面向量的正交分解把一個向量分解為_____________,叫做把向量正交分解。2、向量的坐標表示在平面直角坐標系中,分別取與x軸、
2025-11-23 08:37
【摘要】§4平面向量的坐標4.1平面向量的坐標表示4.2平面向量線性運算的坐標表示4.3向量平行的坐標表示,)1.問題導航(1)相等向量的坐標相同嗎?相等向量的起點、終點的坐標一定相同嗎?(2)求向量AB→的坐標需要知道哪些量?(3)兩個向量a=(x1,y
2025-11-19 00:13
【摘要】平面向量應用舉例平面幾何中的向量方法問題提出,使得向量可以進行線性運算和數量積運算,并具有鮮明的幾何背景,從而溝通了平面向量與平面幾何的內在聯系,在某種條件下,平面向量與平面幾何可以相互轉化.、垂直、夾角、距離、全等、相似等,是平面幾何中常見的問題,而這些問題都可以由向量的線性運算及數量積表示出
2025-11-09 12:17
【摘要】2020/12/24向量的加法看書P80~83(限時6分鐘)學習目標:通過實例,掌握向量的加法運算及理解其幾何意義。熟練運用加法的“三角形法則”和“平行四邊形”法則2020/12/24由于大陸和臺灣沒有直航,因此要從臺灣去上海探親,乘飛機要先從臺北到香港,再從香港到上海,這兩次位移
2025-11-08 11:59
【摘要】第一頁,編輯于星期六:點三十二分。,2.2平面向量的線性運算2.2.1向量加法運算及其幾何意義,第二頁,編輯于星期六:點三十二分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十二分。...
2025-10-13 18:48
【摘要】第一頁,編輯于星期六:點三十二分。,2.2平面向量的線性運算2.2.2向量減法運算及其幾何意義,第二頁,編輯于星期六:點三十二分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十二分。...
【摘要】雙基達標?限時20分鐘?1.下列各組的兩個向量共線的是().A.a1=(-2,3),b1=(4,6)B.a2=(1,-2),b2=(7,14)C.a3=(2,3),b3=(3,2)D.a4=(-3,2),b4=(6,-4)解析對于A,-2
2025-11-18 23:43