【摘要】常微分方程第三章測試卷班級姓名學號得分一、填空題(30分)1,則稱函數為在R上關于y滿足利普希茲條件。2,存在唯一性定理中近似值與真正解在區(qū)間內的誤差估計式為3,由解關于初值的對稱性
2025-06-26 20:26
【摘要】....常微分方程1.,并求滿足初始條件:x=0,y=1的特解.解:對原式進行變量分離得并求滿足初始條件:x=0,y=1的特解.解:對原式進行變量分離得:3解:原式可化為:12.解15.16.解:
2025-06-24 15:07
【摘要】第九章常微分方程數值解法許多實際問題的數學模型是微分方程或微分方程的定解問題。如物體運動、電路振蕩、化學反映及生物群體的變化等。常微分方程可分為線性、非線性、高階方程與方程組等類;線性方程包含于非線性類中,高階方程可化為一階方程組。若方程組中的所有未知量視作一個向量,則方程組可寫成向量形式的單個方程。因此研究一階微分方程的初值問題
2025-08-23 01:54
2025-06-26 20:30
【摘要】常微分方程自學習題及答案一填空題:1一階微分方程的通解的圖像是維空間上的一族曲線.2二階線性齊次微分方程的兩個解y1(x);y2(x)為方程的基本解組充分必要條件是________.3方程的基本解組是_________.4一個不可延展解的存在區(qū)間一定是___________區(qū)間.5方程的常數解是________.6
2025-03-25 01:12
【摘要】江蘇師范大學數學教育專業(yè)《常微分方程》練習測試題庫參考答案一、判斷說明題1、在線性齊次方程通解公式中C是任意常數而在常數變易法中C(x)是x的可微函數。將任意常數C變成可微函數C(x),期望它解決線性非齊次方程求解問題,這一方法成功了,稱為常數變易法。2、因p(x)連續(xù),y(x)=yexp(-)在p(x)連續(xù)的區(qū)間有意義,而exp(-)>0。如果y=0,推出y(x)=0,如果y
2025-06-24 15:00
【摘要】目錄上頁下頁返回結束§幾個線性系統(tǒng)的計算機相圖平面線性系統(tǒng)的初始奇點目錄上頁下頁返回結束本節(jié)我們仍考慮被稱為平面系統(tǒng)的二維自治系統(tǒng)(,)(,)dxfxydtdygxydt?????
2025-01-20 04:56
【摘要】目錄上頁下頁返回結束微分方程課程的一個主要問題是求解,即把微分方程的解通過初等函數或它們的積分表達出來,但對一般的微分方程是無法求解的,如對一般的二元函數),(yxf,我們無法求出一階微分方程),(yxfy??(1)的解,但是對某些特殊類型的方程,我們可設法轉化為已解決的問題第二章
2025-11-29 09:04
【摘要】9《常微分方程》選擇題及答案選擇題1、下列方程中為常微分方程的是()(A)(B)(C)(D)(c為常數)2、下列微分方程是線性
【摘要】1.=2xy,并滿足初始條件:x=0,y=1的特解。解:=2xdx兩邊積分有:ln|y|=x+cy=e+e=cex另外y=0也是原方程的解,c=0時,y=0原方程的通解為y=cex,x=0y=1時c=1特解為y=e.2.ydx+(x+1)dy=0并求滿足初始條件:x=0,y=1的特解。解:ydx=-(x+1)dydy=-dx兩邊積分
2025-06-26 20:41
【摘要】1.,并求滿足初始條件:x=0,y=1的特解.解:對原式進行變量分離得并求滿足初始條件:x=0,y=1的特解.解:對原式進行變量分離得:3解:原式可化為:12.解15.16.解:,這是齊次方程,令17.解:原方程化為令方程組則有令當當
2025-06-26 20:53
【摘要】常微分方程練習試卷一、填空題。1.方程是階(線性、非線性)微分方程.2.方程經變換,可以化為變量分離方程.3.微分方程滿足條件的解有個.4.設常系數方程的一個特解,則此方程的系數,,.5.朗斯基行列式是函數組在上線性相關的
【摘要】常微分方程期終考試試卷(1)一、填空題(30%)1、方程有只含的積分因子的充要條件是()。有只含的積分因子的充要條件是______________。2、_____________稱為黎卡提方程,它有積分因子______________。3、__________________稱為伯努利方程,它有積分因子_________。4、若為階齊線性方程的個解,則它
【摘要】用分離變量法解常微分方程.1直接可分離變量的微分方程=()的方程,稱為變量分離方程,這里,分別是的連續(xù)函數.如果(y)≠0,我們可將()改寫成=,這樣,變量就“分離”,得到 通解:=+c. ()其中,c表示該常數,,分別理解為,()()的解.例1求解方程的通解.解:(1)變形且分離變量:(2)兩邊積分:,得.
2025-07-25 08:19
【摘要】常微分方程(第三版)王高雄著課后習題答案1.=2xy,并滿足初始條件:x=0,y=1的特解。解:=2xdx兩邊積分有:ln|y|=x+cy=e+e=cex另外y=0也是原方程的解,c=0時,y=0原方程的通解為y=cex,x=0y=1時c=1特解為y=e.2.ydx+(x+1)dy=0并求滿足初始條件:x=0,y=1的特解。解:ydx=-(
2025-01-18 00:00