【摘要】331§9.4二階常系數(shù)線性微分方程二階常系數(shù)線性微分方程的一般形式為)(xfqyypy??????其中qp和是實常數(shù),)(xf是已知函數(shù)。當0)(?xf時,形式為0??????qyypy稱為二階常系數(shù)線性齊次微分方程。例如034??????yy如果
2025-01-20 04:56
【摘要】《常微分方程》教學大綱一、?計劃學時:72課時二、?適用專業(yè):數(shù)學與應用數(shù)學(師范類)(本、??疲?、信息與計算科學(本)三、???課程性質與任務:常微分方程是高等師范院校數(shù)學與應用數(shù)學專業(yè)及信息與計算專業(yè)的基礎課之一。本課程主要學習各種基本類型的常微分方程解的性質、方程的解法及其某些應用。通過該課程的學習,使學生正確理解常微分
2025-04-16 23:04
【摘要】數(shù)學與計算科學學院實驗報告實驗項目名稱Eular方法求解一階常微分方程數(shù)值解所屬課程名稱偏微分方程數(shù)值解實驗類型驗證性實驗日期20
2025-07-24 00:27
【摘要】《常微分方程》自學指導書一、課程編碼、適用專業(yè)及教材課程編碼:110621211總學時:90學時,其中面授學時:28學時,自學學時:62學時。適用專業(yè):數(shù)學與應用數(shù)學專業(yè)(函授本科)使用教材:王高雄等編,常微分方程,高等教育出版社(第二版),1983.9。二、課程性質常微分方程科程是高等院校數(shù)學專業(yè)在數(shù)學分析和高等代數(shù)基礎上繼續(xù)深入和發(fā)展的一門
2025-09-25 15:52
【摘要】常微分方程課程教學大綱(OrdinaryDifferentialEquation)課程性質:學科基礎課適用專業(yè):信息與計算科學先修課程:數(shù)學分析、高等代數(shù)、普通物理后續(xù)課程:微分方程數(shù)值解總學分:3教學目的與要求:微分方程是數(shù)學理論聯(lián)系實際的重要渠道之一,也是其它數(shù)學分支的一個綜合應用場所,我們所研究的方程多數(shù)是由其它學科(如物理、氣象、生態(tài)學、經(jīng)濟學)推
2025-08-22 20:44
【摘要】第一篇:常微分方程答案第三章 =x+y2通過點(0,0)的第三次近似解。dx 解:f(x,y)=x+y2,令j0(x)=y0=0,則 j1(x)=y0+òf(x,j0(x))dx=òxdx=...
2025-10-18 20:18
【摘要】....常微分方程1.,并求滿足初始條件:x=0,y=1的特解.解:對原式進行變量分離得并求滿足初始條件:x=0,y=1的特解.解:對原式進行變量分離得:3解:原式可化為:12.解15.16.解:
2025-06-24 15:07
2025-06-26 20:30
【摘要】《微積分幾何》復習題本科第一部分:練習題庫及答案一、填空題(每題后面附有關鍵詞;難易度;答題時長)第一章1.已知,則這兩個向量的夾角的余弦=2.已知,求這兩個向量的向量積(-1,-1,-1).3.過點且與向量垂直的平面方程為X-Z=04.求兩平面與的交線的對稱式方程為5.計算.6.設,,求0.7.已知,其中,,則8.已知,,則9
2025-06-24 23:00
【摘要】1常微分方程(第三版)王高雄著課后習題答案習題1.dxdy=2xy,并滿足初始條件:x=0,y=1的特解。解:ydy=2xdx兩邊積分有:ln|y|=x2+cy=e2x+ec=cex2另外y=0也是原方程的解,c=0時,y=0原方程的通解為y=cex2,x=0y=1時c=1特解為y=e2
2025-01-08 20:41
【摘要】第一節(jié)微分方程的概念第二節(jié)常見的一階微分方程第三節(jié)高階微分方程第四節(jié)歐拉方程第五節(jié)微分方程的應用第六節(jié)差分方程簡介微分方程簡介?方程:線性方程、二次方程、高次方程、指數(shù)方程、對數(shù)方程、三角方程和方程組等。?用微積分描述運動,便得到微分方程。例如描述物質在一定條件下的運動變化規(guī)律;
2025-01-19 12:01
【摘要】第三章存在和唯一性定理一.[內容提要]本章主要介紹解的存在和唯一性定理、,學過這一定理之后,對于微分方程的通解概念,才由形式上的理解轉為實質上的理解;另外在求近似解之前,都必須從理論上做解的存在唯一性判定.關于解的延伸定理,它把解的存在唯一性定理所得到的、具有局部性的結果,,都是很有意義的.二.[關鍵詞]存在和唯一性,解的延伸,畢卡逐次逼近法三.[目的和要求]
2025-06-29 11:50
【摘要】1.=2xy,并滿足初始條件:x=0,y=1的特解。解:=2xdx兩邊積分有:ln|y|=x+cy=e+e=cex另外y=0也是原方程的解,c=0時,y=0原方程的通解為y=cex,x=0y=1時c=1特解為y=e.2.ydx+(x+1)dy=0并求滿足初始條件:x=0,y=1的特解。解:ydx=-(x+1)dydy=-dx兩邊積分
2025-06-26 20:41
【摘要】1.,并求滿足初始條件:x=0,y=1的特解.解:對原式進行變量分離得并求滿足初始條件:x=0,y=1的特解.解:對原式進行變量分離得:3解:原式可化為:12.解15.16.解:,這是齊次方程,令17.解:原方程化為令方程組則有令當當
2025-06-26 20:53
【摘要】目錄上頁下頁返回結束一、一階微分方程求解1.一階標準類型方程求解關鍵:辨別方程類型,掌握求解步驟2.一階非標準類型方程求解(1)變量代換法——代換自變量代換因變量代換某組合式(2)積分因子法——選積分因子,解全微分方程四個標準類型
2025-10-10 17:11