【摘要】第一篇:常微分方程答案第三章 =x+y2通過(guò)點(diǎn)(0,0)的第三次近似解。dx 解:f(x,y)=x+y2,令j0(x)=y0=0,則 j1(x)=y0+òf(x,j0(x))dx=òxdx=...
2025-10-18 20:18
【摘要】....常微分方程1.,并求滿足初始條件:x=0,y=1的特解.解:對(duì)原式進(jìn)行變量分離得并求滿足初始條件:x=0,y=1的特解.解:對(duì)原式進(jìn)行變量分離得:3解:原式可化為:12.解15.16.解:
2025-06-24 15:07
2025-06-26 20:30
【摘要】習(xí)題2-1判斷下列方程是否為恰當(dāng)方程,并且對(duì)恰當(dāng)方程求解:1.0)12()13(2????dyxdxx解:13),(2??xyxP,12),(??xyxQ,則0???yP,2???xQ,所以xQyP?????即原方程不是恰當(dāng)方程.2.0)2()2(????dyyx
2025-01-10 04:15
【摘要】1常微分方程(第三版)王高雄著課后習(xí)題答案習(xí)題1.dxdy=2xy,并滿足初始條件:x=0,y=1的特解。解:ydy=2xdx兩邊積分有:ln|y|=x2+cy=e2x+ec=cex2另外y=0也是原方程的解,c=0時(shí),y=0原方程的通解為y=cex2,x=0y=1時(shí)c=1特解為y=e2
2025-01-08 20:41
【摘要】第一節(jié)微分方程的概念第二節(jié)常見(jiàn)的一階微分方程第三節(jié)高階微分方程第四節(jié)歐拉方程第五節(jié)微分方程的應(yīng)用第六節(jié)差分方程簡(jiǎn)介微分方程簡(jiǎn)介?方程:線性方程、二次方程、高次方程、指數(shù)方程、對(duì)數(shù)方程、三角方程和方程組等。?用微積分描述運(yùn)動(dòng),便得到微分方程。例如描述物質(zhì)在一定條件下的運(yùn)動(dòng)變化規(guī)律;
2025-01-19 12:01
【摘要】第三章存在和唯一性定理一.[內(nèi)容提要]本章主要介紹解的存在和唯一性定理、,學(xué)過(guò)這一定理之后,對(duì)于微分方程的通解概念,才由形式上的理解轉(zhuǎn)為實(shí)質(zhì)上的理解;另外在求近似解之前,都必須從理論上做解的存在唯一性判定.關(guān)于解的延伸定理,它把解的存在唯一性定理所得到的、具有局部性的結(jié)果,,都是很有意義的.二.[關(guān)鍵詞]存在和唯一性,解的延伸,畢卡逐次逼近法三.[目的和要求]
2025-06-29 11:50
【摘要】9《常微分方程》選擇題及答案選擇題1、下列方程中為常微分方程的是()(A)(B)(C)(D)(c為常數(shù))2、下列微分方程是線性
2025-03-25 01:12
【摘要】1.=2xy,并滿足初始條件:x=0,y=1的特解。解:=2xdx兩邊積分有:ln|y|=x+cy=e+e=cex另外y=0也是原方程的解,c=0時(shí),y=0原方程的通解為y=cex,x=0y=1時(shí)c=1特解為y=e.2.ydx+(x+1)dy=0并求滿足初始條件:x=0,y=1的特解。解:ydx=-(x+1)dydy=-dx兩邊積分
2025-06-26 20:41
【摘要】1.,并求滿足初始條件:x=0,y=1的特解.解:對(duì)原式進(jìn)行變量分離得并求滿足初始條件:x=0,y=1的特解.解:對(duì)原式進(jìn)行變量分離得:3解:原式可化為:12.解15.16.解:,這是齊次方程,令17.解:原方程化為令方程組則有令當(dāng)當(dāng)
2025-06-26 20:53
【摘要】目錄上頁(yè)下頁(yè)返回結(jié)束一、一階微分方程求解1.一階標(biāo)準(zhǔn)類型方程求解關(guān)鍵:辨別方程類型,掌握求解步驟2.一階非標(biāo)準(zhǔn)類型方程求解(1)變量代換法——代換自變量代換因變量代換某組合式(2)積分因子法——選積分因子,解全微分方程四個(gè)標(biāo)準(zhǔn)類型
2025-10-10 17:11
【摘要】常微分方程期終考試試卷(1)一、填空題(30%)1、方程有只含的積分因子的充要條件是()。有只含的積分因子的充要條件是______________。2、_____________稱為黎卡提方程,它有積分因子______________。3、__________________稱為伯努利方程,它有積分因子_________。4、若為階齊線性方程的個(gè)解,則它
【摘要】用分離變量法解常微分方程.1直接可分離變量的微分方程=()的方程,稱為變量分離方程,這里,分別是的連續(xù)函數(shù).如果(y)≠0,我們可將()改寫(xiě)成=,這樣,變量就“分離”,得到 通解:=+c. ()其中,c表示該常數(shù),,分別理解為,()()的解.例1求解方程的通解.解:(1)變形且分離變量:(2)兩邊積分:,得.
2025-07-25 08:19
【摘要】本章重點(diǎn)講述:A線性微分方程的基本理論;B常系數(shù)線性方程的解法;C某些高階方程的降階和二階方程的冪級(jí)數(shù)解法。對(duì)于二階及二階以上的微分方程的解包括基本理論和求解方法。這部分內(nèi)容有兩部分:1、線性微分方程(組):在第四、五章討論
【摘要】常微分方程課程簡(jiǎn)介常微分方程是研究自然科學(xué)和社會(huì)科學(xué)中的事物、物體和現(xiàn)象運(yùn)動(dòng)、演化和變化規(guī)律的最為基本的數(shù)學(xué)理論和方法。物理、化學(xué)、生物、工程、航空航天、醫(yī)學(xué)、經(jīng)濟(jì)和金融領(lǐng)域中的許多原理和規(guī)律都可以描述成適當(dāng)?shù)某N⒎址匠?,如牛頓運(yùn)動(dòng)定律、萬(wàn)有引力定律、機(jī)械能守恒定律,能量守恒定律、人口發(fā)展規(guī)律、生態(tài)種群競(jìng)爭(zhēng)、疾病傳染、遺傳基因變異、股票的漲伏趨勢(shì)、利
2025-08-01 13:03