freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中學(xué)畢業(yè)沖刺中考數(shù)學(xué)試卷兩套匯編十一附答案解析(存儲版)

2025-02-10 02:37上一頁面

下一頁面
  

【正文】 ) x+2m﹣ 6 的對稱軸為直線 x=1,與 x 軸交于 A,B 兩點(點 A 在點 B 的左側(cè)),與 y 軸交于點 C. ( 1)求 m 的值; ( 2)直線 l 經(jīng)過 B、 C 兩點,求直線 l 的解析式. 28.如圖, △ ABC 中,已知 ∠ BAC=45176。 ∵ CE⊥ AB, ∴∠ BCE=90176。 ∵∠ BAE=∠ CDF, 在 △ ABE 和 △ DCF 中, , ∴△ ABE≌△ DCF( ASA), ∴ BE=CF, ∴ BC=EF, ∵ BC=AD, ∴ EF=AD, 又 ∵ EF∥ AD, ∴ 四邊形 AEFD 是平行四邊形; ( 2)解:由( 1)知: EF=AD=5, 在 △ EFD 中, ∵ DF=3, DE=4, EF=5, ∴ DE2+DF2=EF2, ∴∠ EDF=90176。 ∠ 2=30176。求四邊形 ABED 的面積. 23.如圖,直線 y=2x+n 與雙曲線 y= ( m≠ 0)交于 A, B 兩點,且點 A 的坐標(biāo)為( 1, 4). ( 1)求 m, n 的值; ( 2)過 x 軸上一點 M 作平行于 y 軸的直線 l,分別與直線 y=2x+n 和雙曲線 y=( m≠ 0)交于點 P, Q,若 PQ=2QM,求點 M 的坐標(biāo). 24.如圖, AB 為 ⊙ O 的直徑, C, D 為 ⊙ O 上不同于 A, B 的兩點,過點 C 作 ⊙ O的切線 CF 交直線 AB 于點 F,直線 DB⊥ CF 于點 E. ( 1)求證: ∠ ABD=2∠ CAB; ( 2)若 BF=5, sin∠ F= ,求 BD 的長. 25.閱讀下列材料: 數(shù)學(xué)課程內(nèi)容分為 “數(shù)與代數(shù) ”、 “圖形與幾何 ”、 “統(tǒng)計與概率 ”、 “綜合與實踐 ”四個領(lǐng)域,其中 “綜合與實踐 ”領(lǐng)域通過探討一些具有挑戰(zhàn)性的研究問題,給我們創(chuàng)造了可以動手操作、探究學(xué)習(xí)、認(rèn)識數(shù)學(xué)知識間的聯(lián)系、發(fā)展應(yīng)用數(shù)學(xué)知識解決問題的意識和能力的機會. “綜合與實踐 ”領(lǐng)域在人教版七﹣九年級 6 冊數(shù)學(xué)教材中共安排了約 40 課時的內(nèi)容,主要有 “數(shù)學(xué)制作與設(shè)計 ”、 “數(shù)學(xué)探究與實驗 ”、 “數(shù)學(xué)調(diào)查與測量 ”、 “數(shù)學(xué)建模 ”等活動類型,所占比例大約為 30%, 20%, 40%, 10%.這些活動以 “課題學(xué)習(xí) ”、 “數(shù)學(xué)活動 ”和 “拓廣探索類習(xí)題 ”等形式分散于各章之中. “數(shù)學(xué)活動 ”幾乎每章后都有 2~ 3 個,共 60 個,其中七年級 22 個,八年級19 個; “課題學(xué)習(xí) ”共 7 個,其中只有八年級下冊安排了 “選擇方案 ”和 “體質(zhì)健康測試中的數(shù)據(jù)分析 ”2 個內(nèi)容,其他 5 冊書中都各有 1 個;七上﹣九下共 6 冊書中 “拓廣探索類習(xí)題 ”數(shù)量分別為 44, 39, 46, 35, 37, 23. 根據(jù)以上材料回答下列問題: ( 1)人教版七﹣九年級數(shù)學(xué)教材中, “數(shù)學(xué)調(diào)查與測量 ”類活動約占 課時; ( 2)選擇統(tǒng)計表或統(tǒng)計圖,將人教版七﹣九年級數(shù)學(xué)教材中 “課題學(xué)習(xí) ”、 “數(shù)學(xué)活動 ”和 “拓廣探索類習(xí)題 ”的數(shù)量表示出來. 26.如圖 1,四邊形 ABCD 中, AB=AD, BC=CD,我們把這種兩組鄰邊分別相等的四邊形叫做箏形.請?zhí)骄?“箏形 ”的性質(zhì)和判定方法.小聰根據(jù)學(xué)習(xí)四邊形的經(jīng)驗,對 “箏形 ”的判定和性質(zhì)進(jìn)行了探究. 下面是小聰?shù)奶骄窟^程,請補充完整: ( 1)如圖 2,連接箏形 ABCD 的對角線 AC, BD 交于點 O,通過測量邊、角或沿一條對角線所在直線折疊等方法探究發(fā)現(xiàn)箏形有一組對角相等,請寫出箏形的其他性質(zhì)(一條即可): ,這條性質(zhì)可用符號表示為: ; ( 2)從邊、角、對角線或性質(zhì)的逆命題等角度進(jìn)行探究,寫出箏形的一個判定方法(定義除外),并證明你的結(jié)論. 27.拋物線 C1: y=a( x+1)( x﹣ 3a)( a> 0)與 x 軸交于 A, B 兩點( A 在 B 的左側(cè)),與 y 軸交于點 C( 0,﹣ 3). ( 1)求拋物線 C1 的解析式及 A, B 點坐標(biāo); ( 2)將拋物線 C1 向上平移 3 個單位長度,再向左平移 n( n> 0)個單位長度,得到拋物線 C2,若拋物線 C2 的頂點在 △ ABC 內(nèi),求 n 的取值范圍. 28.在等邊 △ ABC 外側(cè)作直線 AP,點 B 關(guān)于直線 AP 的對稱點為 D,連接 AD,BD, CD,其中 CD 交直線 AP 于點 E.設(shè) ∠ PAB=α, ∠ ACE=β, ∠ AEC=γ. ( 1)依題意補全圖 1; ( 2)若 α=15176。 D. 50176。+( 1﹣ π) 0. 【考點】 實數(shù)的運算;零指數(shù)冪;負(fù)整數(shù)指數(shù)冪;特殊角的三角函數(shù)值. 【分析】 本題涉及負(fù)整數(shù)指數(shù)冪、絕對值、特殊角的三角函數(shù)值、零指數(shù)冪 4個考點.在計算時,需要針對每個考點分別進(jìn)行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果. 【解答】 解:( ) ﹣ 1+|﹣ 2|﹣ 2cos60176。 BF=5, sin∠ F= , ∴ BE=BF?sin∠ F=5 =3, ∵ OC∥ BE, ∴△ FBE∽△ FOC, ∴ = , 設(shè) ⊙ O 的半徑為 r,則 = , 解得 r= , 在 RT△ ABD 中, ∠ ADB=90176。那么 n= 9 . 【考點】 正多邊形和圓. 【分析】 利用 360 度除以中心角的度數(shù)即可求得. 【解答】 解: ∵ 正 n 邊形的中心角 = =40176。 B. 35176。那么 n= . 13.關(guān)于 x 的一元二次方程 x2﹣ 2x+m=0 有兩個不相等的實數(shù)根.請你寫出一個滿足條件的 m 值: m= . 14.《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作,記有許多有趣而又不乏技巧的算術(shù)程式.其中記載: “今有甲、乙二人,持錢各不知數(shù).甲得乙中半,可滿四十八.乙得甲太半,亦滿四十八.問甲、乙二人原持錢各幾何? ” 譯文: “甲,乙兩人各有若干錢.如果甲得到乙所有錢的一半,那么甲共有錢 48文.如果乙得到甲所有錢的 ,那么乙也共有錢 48 文.問甲,乙二人原來各有多少錢? ” 設(shè)甲原有 x 文錢,乙原有 y 文錢,可列方程組為 . 15.我國 2022﹣ 2022 年高鐵運營里程情況統(tǒng)計如圖所示,根據(jù)統(tǒng)計圖提供的信息,預(yù)估 2022 年我國高鐵運營里程約為 萬公里,你的預(yù)估理由是 . 16.閱讀下面材料: 在數(shù)學(xué)課上,老師提出如下問題: 小敏的作法如下: 老師說: “小敏的作法正確. ” 請回答:小敏的作圖依據(jù)是 . 三、解答題(本題共 72 分,第 1726 題,每小題 5 分,第 27 題 7 分,第 28 題7 分,第 29 題 8 分)解答應(yīng)寫出文字說明,演算步驟或證明過程. 17.計算:( ) ﹣ 1+|﹣ 2|﹣ 2cos60176。 ∠ F=∠ ADC=90176。 ∴ BD=2 , AC=2 , ∵ E 是 AD 的中點. ∴ AD=2ED=2 . ∴ 菱形 ABCD 的周長為 4 2 =8 , ∴ 菱形 ABCD 的面積為 2 2 =4 . 25. 2022 年國際數(shù)學(xué)家大會在中國北京舉行,這是 21 世紀(jì)全世界數(shù)學(xué)家的第一次大聚會.這次大會的會徽就是如圖,選定的是我國古代數(shù)學(xué)家趙爽用來證明勾股定理的弦圖,可以說是充分肯定了我國數(shù)學(xué)的成就,也弘揚了我國古代的數(shù)學(xué)文化.弦圖是由四個全等的直角三角形和中間的 小正方形拼成的一個大正方形.如果大正方形的面積是 13,小正方形的面積是 1,直角三角形的較短直角邊長為 a,較長直角邊長為 b,那么你能求出( a+b) 2 的值嗎? 【考點】 勾股定理的證明. 【分析】 根據(jù)勾股定理可以求得 a2+b2 等于大正方形的面積,然后求四個直角三角 形的面積,即可得到 ab 的值,然后根據(jù)( a+b) 2=a2+2ab+b2 即可求解. 【解答】 解:根據(jù)勾股定理可得 a2+b2=13, 四個直角三角形的面積是: ab 4=13﹣ 1=12,即: 2ab=12 則( a+b) 2=a2+2ab+b2=13+12=25. 26.如圖,四邊形 ABCD 是矩形,點 E 在 BC 邊上,點 F 在 BC 延長線上,且 ∠ CDF=∠ BAE. ( 1)求證:四邊形 AEFD 是平行四邊形; ( 2)若 DF=3, DE=4, AD=5,求 CD 的長度. 【考點】 平行四邊形的判定;矩形的性質(zhì). 【分析】 ( 1)直接利用矩形的性質(zhì)結(jié)合全等三角形的判定與性質(zhì)得出 BE=CF,進(jìn)而得出答案; ( 2)利用勾股定理的逆定理得出 ∠ EDF=90176。 【考點】 平行四邊形的性質(zhì). 【分析】 由平行四邊形 ABCD 的性質(zhì)得出 ∠ B=75176。 D. 25176。 C. 30176。 D. 25176。.求菱形 ABCD 的周長和面積. 【考點】 菱形的性質(zhì). 【分析】 首先連接 BD,易證得四邊形 EFBD 為平行四邊形,即可求得 AD 的長,繼而求得菱形 ABCD 的周長,求出對角線的長度,利用菱形的面積 =對角線乘積的一半求出面積. 【解答】 解:連接 BD. ∵ 在菱形 ABCD 中, ∴ AD∥ BC, AC⊥ BD. 又 ∵ EF⊥ AC, ∴ BD∥ EF. ∴ 四邊形 EFBD 為平行四邊形. ∴ FB=ED= . ∵∠ AEM=30176。. 又 ∵ AD⊥ BC ∴∠ E=∠ ADB=90176。 6.為了解某種電動汽車一次充電后行駛的里程數(shù),對其進(jìn)行了抽檢,統(tǒng)計結(jié)果如圖所示,則在一次充電后行駛的里程數(shù)這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是( ) A. 220, 220 B. 220, 210 C. 200, 220 D. 230, 210 7.為了加強視力保護(hù)意識,小明要在書房里掛一張視力表.由于書房空間狹小,他想根據(jù)測試距離為 5m 的大視力表制作一個測試距離為 3m 的小視力表.如圖,如果大視力表中 “E”的高度是 ,那么小視力表中相應(yīng) “E”的高度是( ) A. 3cm B. C. D. 8.象棋在中國有著三千多年的歷史,由于用具簡單,趣味性強,成為流行極為廣泛的益智游戲.如圖,是一局象棋殘局,已知表示棋子 “馬 ”和 “車 ”的點的坐標(biāo)分別為( 4, 3),(﹣ 2, 1),則表示棋子 “炮 ”的點的坐標(biāo)為( ) A.(﹣ 3, 3) B.( 3, 2) C.( 0, 3) D.( 1, 3) 9.手工課上,老師將同學(xué)們分成 A, B 兩個小組制作兩個汽車模型,每個模型先由 A 組同學(xué)完成打磨工作,再由 B 組同學(xué)進(jìn)行組裝完成制作,兩個模型每道工序所需時間如下: 工序 時間 模型 打磨( A 組) 組裝( B 組) 模型甲 9 分鐘 5 分鐘 模型乙 6 分鐘 11 分鐘 則這兩個模型都制作完成所需的最短時間為( ) A. 20 分鐘 B. 22 分鐘 C. 26 分鐘 D. 31 分鐘 10.如圖 1, △ ABC 是一塊等邊三角形場地,點 D, E 分別是 AC, BC 邊上靠近 C點的三等分點.現(xiàn)有一個機器人(點 P)從 A 點出發(fā)沿 AB 邊運動,觀察員選擇了一個固定的位置記錄機器人的運動情況.設(shè) AP=x,觀察員與機器人之間的距離為 y,若表示 y 與 x 的函數(shù)關(guān)系的圖象大致如圖 2 所示,則觀察員所處的位置可能是圖 1 的( ) A.點 B B.點 C C.點 D D.點 E 二、填空題(本題共 18 分,每小題 3 分) 11.因式分解: a3﹣ ab2= . 12.如圖,一個正 n 邊形紙片被撕掉了一部分,已知它的中心角是 40176。則 ∠ A 等于( ) A. 30176。 故選 C. 6.為了解某種電動汽車一次充電后行駛的里程數(shù),對其進(jìn)行了抽檢,統(tǒng)計結(jié)果如圖所示,則在一次充電后行駛的里程數(shù)這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是( ) A. 220, 220 B. 220, 210 C. 200, 220 D. 230, 210 【考點】 眾數(shù);條形統(tǒng)計圖;中位數(shù). 【分析】 根據(jù)眾數(shù)與中位數(shù)的定義,找出出現(xiàn)次數(shù)最多的數(shù),把這組數(shù)據(jù)從小到大排列,求出最中間兩個數(shù)的平均數(shù)即可. 【解答】 解:數(shù)據(jù) 220 出現(xiàn)了 4 次,最多, 故眾數(shù)為 220, 共 1+2+3+4=10 個數(shù), 排序后位于第 5 和第 6 位的數(shù)均為 220, 故中位數(shù)為 220, 故選 A. 7.為了加強視力保護(hù)意識,小明要在書房里掛一張視力表.由于書房空間狹小,他想根據(jù)測試距離為 5m 的大視力表制作一個測試距離為 3m 的小視力表.如圖,如果大視力表中 “E”的高度是 ,那么小視力表中相應(yīng) “E”的高度是( ) A. 3cm B. C. D. 【考點】 相似三角形的應(yīng)用. 【分析】 直接利用平行線分線段成比例定理列比例式,代入可得結(jié)論. 【解答】 解:由題意得: CD∥ AB, ∴ = , ∵ AB=, BE=5m, DE=3m,
點擊復(fù)制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1