【摘要】常微分方程習(xí)題及解答一、問答題:1.常微分方程和偏微分方程有什么區(qū)別?微分方程的通解是什么含義?答:微分方程就是聯(lián)系著自變量,未知函數(shù)及其導(dǎo)數(shù)的關(guān)系式。常微分方程,自變量的個(gè)數(shù)只有一個(gè)。偏微分方程,自變量的個(gè)數(shù)為兩個(gè)或兩個(gè)以上。常微分方程解的表達(dá)式中,可能包含一個(gè)或幾個(gè)任意常數(shù),若其所包含的獨(dú)立的任意常數(shù)的個(gè)數(shù)恰好與該方程的階數(shù)相同,這樣的解為該微分方程的通解。2.舉例闡述常
2025-03-25 01:12
【摘要】例1一曲線通過點(diǎn)(1,2),且在該曲線上任一點(diǎn)),(yxM處的切線的斜率為x2,求這曲線的方程.解)(xyy?設(shè)所求曲線為xdxdy2???xdxy22,1??yx時(shí)其中,2Cxy??即,1?C求得.12??xy所求曲線方程為一、問題的提出微分方程:凡含有未知函數(shù)的導(dǎo)數(shù)或微分的方程叫
2024-12-08 03:00
【摘要】常微分方程試卷B卷一、填空題1、二階常系數(shù)非齊次線性微分方程的通解等于其對應(yīng)的的通解再加上的一個(gè)特解2、是階微分方程。3、微分方程是(類型)微分方程。4、微分方程的通解為。5、一曲線經(jīng)過原點(diǎn),且曲線上
2025-09-25 15:11
【摘要】常微分方程一、填空題1.微分方程的階數(shù)是____________答:12.若和在矩形區(qū)域內(nèi)是的連續(xù)函數(shù),且有連續(xù)的一階偏導(dǎo)數(shù),則方程有只與有關(guān)的積分因子的充要條件是_________________________答:3._________________________________________稱為齊次方程.答:形如的方程4.如
【摘要】第三章一階微分方程的解的存在定理需解決的問題?,)(),(1000的解是否存在初值問題???????yxyyxfdxdy?,,)(),(2000是否唯一的解是存在若初值問題???????yxyyxfdxdy§解的存在唯一性定理
2025-01-20 04:55
【摘要】218.111.1常微分方程教學(xué)大綱(OrdinaryDifferentialEquations)學(xué)分?jǐn)?shù)3周學(xué)時(shí)3+1:常微分方程(一學(xué)期課程)一學(xué)期:4*18.:(1)課
2025-08-22 20:43
【摘要】習(xí)題一一、單項(xiàng)選擇題.1.微分方程的階數(shù)是().A.1B.2C.3D.52.克萊羅方程的一般形式是().A.B.C.D.3.下列方程中為全微分方程的是().A.B.C.
【摘要】第十二章常微分方程(A)一、是非題1.任意微分方程都有通解。()2.微分方程的通解中包含了它所有的解。()3.函數(shù)是微分方程的解。()4.函數(shù)是微分方程的解。()5.微分方程的通解是(為任意常數(shù))。()6.是一階線性微分方程。()7.不是一階線性微分方程。()8.的特征方程為。()
2025-06-07 18:55
【摘要】2.求解下列常系數(shù)線性微分方程:(1)解:特征方程:特征根:基本解組:所求通解:(2)解:特征方程:特征根:基本解組:所求通解:(3)解:特征方程:特征根:基本解組:所求通解:(4)解:特征方程:特征根:基本解組:所求通解:(5)(屬于類型Ⅰ)解:齊次方程:特征方程:
2025-06-26 20:31
【摘要】1山東英才學(xué)院畢業(yè)論文設(shè)計(jì)論文題目:微分方程數(shù)值解二級學(xué)院:計(jì)算機(jī)電子信息工程學(xué)院學(xué)科專業(yè):計(jì)算機(jī)及應(yīng)用學(xué)號:姓
2024-12-03 17:07
【摘要】本章重點(diǎn)講述:A線性微分方程的基本理論;B常系數(shù)線性方程的解法;C某些高階方程的降階和二階方程的冪級數(shù)解法。對于二階及二階以上的微分方程的解包括基本理論和求解方法。這部分內(nèi)容有兩部分:1、線性微分方程(組):在第四、五章討論
2025-10-10 17:11
【摘要】數(shù)學(xué)實(shí)驗(yàn)ExperimentsinMathematics重慶郵電學(xué)院基礎(chǔ)數(shù)學(xué)教學(xué)部微分方程實(shí)驗(yàn)?zāi)康膶?shí)驗(yàn)內(nèi)容MATLAB2、學(xué)會(huì)用Matlab求微分方程的數(shù)值解.實(shí)驗(yàn)軟件1、學(xué)會(huì)用Matlab求簡單微分方程的解析解.1、求簡單微分方程的解析解.4、實(shí)驗(yàn)作業(yè).2、求微分方程的數(shù)值解.3、數(shù)學(xué)建模實(shí)例
2025-01-04 11:38
【摘要】第二章習(xí)題答案第二章?第三章?第四章?第五章?第六章?q1顯示答案a1隱藏答案q2顯示答案a2第二章?第三章?第四章?第五章?第六章?q1顯示答案a1隱藏答案q2顯示答案a2隱藏答案q3顯示
2025-06-19 20:50
【摘要】§解對初值的連續(xù)性和可微性定理200(,),(,)(1)()dyfxyxyGRdxyxy?????????考察的解對初值的一些基本性質(zhì)00(,,)yxxy???解對初值的連續(xù)性?解對初值和參數(shù)的連續(xù)性
2025-01-20 04:56
【摘要】偏微分方程數(shù)值解試題(06B)參考答案與評分標(biāo)準(zhǔn)信息與計(jì)算科學(xué)專業(yè)一(10分)、設(shè)矩陣對稱,定義,.若,則稱稱是的駐點(diǎn)(或穩(wěn)定點(diǎn)).矩陣對稱(不必正定),求證是的駐點(diǎn)的充要條件是:是方程組的解解:設(shè)是的駐點(diǎn),對于任意的,令,(3分),即對于任意的,,特別取,則有,得到.(3分)反之,若滿足,則對于任意的,,因此是的最小值點(diǎn).(4分)評分標(biāo)
2025-06-19 20:37