【摘要】高二年單元考試試卷(圓錐曲線)一、選擇題(60分)1.已知雙曲線的一個焦點為,則雙曲線的漸近線方程為()A.B.C.D.2.平面直角坐標(biāo)系中,已知為坐標(biāo)原點,點、的坐標(biāo)分別為、.若動點滿足,其中、,且,則點的軌跡方程為A.B.C
2025-08-05 18:12
【摘要】關(guān)于圓錐曲線的中點弦問題直線與圓錐曲線相交所得弦中點問題,是解析幾何中的重要內(nèi)容之一,也是高考的一個熱點問題。這類問題一般有以下三種類型:(1)求中點弦所在直線方程問題;(2)求弦中點的軌跡方程問題;(3)求弦中點的坐標(biāo)問題。其解法有代點相減法、設(shè)而不求法、參數(shù)法、待定系數(shù)法及中心對稱變換法等。一、求中點弦所在直線方程問題例1、過橢圓內(nèi)一點M(2,1)引一條弦,使弦被
2025-07-26 08:15
【摘要】 高考數(shù)學(xué)-圓錐曲線簡化計算技巧 圓錐曲線計算技巧——整理自有道精品課關(guān)旭老師公開課“新高三圓錐曲線專項”給定一個橢圓和一條直線:橢圓方程:x2a2+y2b2=1直線方程:y=kx+b一般做...
2025-01-14 22:17
【摘要】第1頁共35頁普通高中課程標(biāo)準(zhǔn)實驗教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座35)—曲線方程及圓錐曲線的綜合問題一.課標(biāo)要求:1.由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問題?;癁榈仁浇鉀Q,要加強(qiáng)等價轉(zhuǎn)化思想的訓(xùn)練;2.通過圓錐曲線與方程的學(xué)習(xí),進(jìn)一步體會數(shù)形結(jié)合的思想;3.了解圓錐曲線
2025-07-28 15:29
【摘要】2020年高考試題文科數(shù)學(xué)(全套)2020年普通高等學(xué)校招生全國統(tǒng)一考試(安徽卷)數(shù)學(xué)(文科)本試卷分第I卷(選擇題)和第II卷(非選擇題)兩部分,第I卷第1至第2頁,第II卷第3至第4頁。全卷滿分150分,考試用時120分鐘。考生注意事項:1.答題前
2024-11-03 07:09
【摘要】高考學(xué)習(xí)網(wǎng)-中國最大高考學(xué)習(xí)網(wǎng)站|我們負(fù)責(zé)傳遞知識!20xx年普通高等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)(江蘇卷)第一卷(選擇題共60分)參考公式:三角函數(shù)的和差化積公式2cos2sin2sinsin??????????2sin2cos2sinsi??????????2
2025-08-15 10:35
【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎(chǔ)知識:1、求曲線(或直線)方程的思考方向大體有兩種,一個方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個方向是
2025-07-25 00:15
【摘要】......學(xué)習(xí)參考 橢 圓典例精析題型一 求橢圓的標(biāo)準(zhǔn)方程【例1】已知點P在以坐標(biāo)軸為對稱軸的橢圓上,點P到兩焦點的距離分別為和453,過P
2025-04-17 13:13
【摘要】......橢圓與雙曲線的性質(zhì)橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3
2025-04-17 13:06
【摘要】直線與圓錐曲線綜合問題一.考點分析。⑴直線與圓錐曲線的位置關(guān)系和判定直線與圓錐曲線的位置關(guān)系有三種情況:相交、相切、相離.直線方程是二元一次方程,圓錐曲線方程是二元二次方程,由它們組成的方程組,經(jīng)過消元得到一個一元二次方程,直線和圓錐曲線相交、相切、相離的充分必要條件分別是0??、0??、0??.⑵直線與圓錐曲線相交所得的弦長
2025-01-09 16:02
【摘要】2007年高考中的“圓錐曲線與方程”試題匯編大全一、選擇題:1.(2007安徽文)橢圓的離心率為(A)(A) (B) (C) (D)2.(2007安徽理)如圖,和分別是雙曲線的兩個焦點,和是以為圓心,以為半徑的圓與該雙曲線左支的兩個交點,且△是等邊三角形,則雙曲線的離心率為(D)(A) (B) (C) (D)3.(2007北京文)橢圓的焦點為
2025-01-14 03:58
【摘要】高考數(shù)學(xué)圓錐曲線知識點總結(jié)方程的曲線:在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:(1)曲線上的點的坐標(biāo)都是這個方程的解;(2)以這個方程的解為坐標(biāo)的點都是曲線上的點,那么這個方程叫做曲線的方程;這條曲線叫做方程的曲線。點與曲線的關(guān)系:若曲線C的方程是f(x,y)=0,則點P0(x0,y0)在
【摘要】WORD資料可編輯橢圓與雙曲線的性質(zhì)橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相
【摘要】學(xué)科:數(shù)學(xué)復(fù)習(xí)內(nèi)容:圓錐曲線【知能目標(biāo)】,橢圓的標(biāo)準(zhǔn)方程,橢圓的幾何性質(zhì),雙曲線的標(biāo)準(zhǔn)方程,雙曲線的幾何性質(zhì),等軸雙曲線與共軛雙曲線的定義,拋物線的標(biāo)準(zhǔn)方程,拋物線的幾何性質(zhì);【綜合脈絡(luò)】【知識歸納】一、橢圓1.定義(1)第一定義:若F1,F(xiàn)2是兩定點,P為動點,且(為常數(shù))則P點的軌跡是橢圓。(2)第二定
2025-01-14 04:02
【摘要】-1-高考數(shù)學(xué)圓錐曲線知識點總結(jié)方程的曲線:在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:(1)曲線上的點的坐標(biāo)都是這個方程的解;(2)以這個方程的解為坐標(biāo)的點都是曲線上的點,那么這個方程叫做曲線的方程;這條曲線叫做方程的曲線。點與曲線的關(guān)系:若曲
2024-10-16 22:15