【摘要】例1)...1)(1)(...1()(425xxxxxxxg?????????解其中展開式的一般項為,321nrrrxxxx?40,20,50,321321?????????rrrnrrr是什么數(shù)列的生成函數(shù)?.數(shù)解的個數(shù)恰為上述方程的非負整的系數(shù)nnhx的生成函數(shù)。的個數(shù)上述方程的非負整數(shù)解是所以,nhx
2025-05-12 17:10
【摘要】基本原理組合排列排列數(shù)公式組合數(shù)公式組合數(shù)性質(zhì)應用問題基礎知識1:知識結(jié)構(gòu)網(wǎng)絡圖復習名稱內(nèi)容分類原理分步原理定義相同點不同點做一件事或完成一項工作的方法數(shù)直接(分類
2024-11-11 02:53
【摘要】2010年高考真題排列組合一、選擇題:1.(2010年高考山東卷理科8)某臺小型晚會由6個節(jié)目組成,演出順序有如下要求:節(jié)目甲必須排在第四位、節(jié)目乙不能排在第一位,節(jié)目丙必須排在最后一位,該臺晚會節(jié)目演出順序的編排方案共有(A)36種 (B)42種 (C)48種 (D)54種【答案】B【解析】分兩類:第一類:甲排在第一位,共有種排法;第二類:甲排在第二
2025-08-05 06:31
【摘要】遼寧省示范性高中瓦房店市第八高級中學高(三)(數(shù)學組)班級:姓名:學號:2013年12月6日
2025-08-05 06:17
【摘要】排列組合公式復習排列與組合 考試內(nèi)容:兩個原理;排列、排列數(shù)公式;組合、組合數(shù)公式?! 】荚囈螅?)掌握加法原理及乘法原理,并能用這兩個原理分析和解決一些簡單的問題?! ?)理解排列、組合的意義。掌握排列數(shù)、組合數(shù)的計算公式,并能用它們解決一些簡單的問題?! ≈攸c:兩個原理尤其是乘法原理的應用?! ‰y點:不重不漏?! ≈R要點及典型例
2025-03-24 12:35
【摘要】高二十班解排列組合復習:題目中規(guī)定相鄰的幾個元素捆綁成一個組,當作一個大元素參與排列.,如果必須相鄰且在的右邊,那么不同的排法種數(shù)有()D、24種解析:把視為一人,且固定在的右邊,則本題相當于4人的全排列,種,答案:.:元素相離(即不相鄰)問題,可先把無位置要求的幾個元素全排列,再把規(guī)定的相離的幾個元素插入上述幾個元素的空位和兩端.,如果甲乙兩個必須不相
2025-08-17 04:20
【摘要】排列組合應用題解法綜述計數(shù)問題中排列組合問題是最常見的,由于其解法往往是構(gòu)造性的,因此方法靈活多樣,不同解法導致問題難易變化也較大,而且解題過程出現(xiàn)“重復”和“遺漏”的錯誤較難自檢發(fā)現(xiàn)。因而對這類問題歸納總結(jié),并把握一些常見解題模型是必要的?;驹斫M合排列排列數(shù)公式組合數(shù)
2025-08-15 22:10
【摘要】基本知識排列與元素的順序有關(guān),組合與順序無關(guān).如231與213是兩個排列,2+3+1的和與2+1+3的和是一個組合.(一)兩個基本原理是排列和組合的基礎(1)加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法,那么完成這件事共有N=m1+m2+m3+…+mn種不同方法.(2)乘
2025-08-05 08:17
【摘要】引入:前面我們已經(jīng)學習和掌握了排列組合問題的求解方法,下面我們要在復習、鞏固已掌握的方法的基礎上,學習和討論排列、組合的綜合問題。和應用問題。問題:解決排列組合問題一般有哪些方法?應注意什么問題?解排列組合問題時,當問題分成互斥各類時,根據(jù)加法原理,可用分類法;當問題考慮先后次序時,根據(jù)乘法原
2025-08-07 14:47
【摘要】排列組合:題目中規(guī)定相鄰的幾個元素捆綁成一個組,當作一個大元素參與排列.,如果必須相鄰且在的右邊,那么不同的排法種數(shù)有A、60種B、48種C、36種D、24種:元素相離(即不相鄰)問題,可先把無位置要求的幾個元素全排列,再把規(guī)定的相離的幾個元素插
2025-08-05 08:51
【摘要】完美WORD格式運用兩個基本原理例1.n個人參加某項資格考試,能否通過,有多少種可能的結(jié)果?例2.同室四人各寫了一張賀年卡,先集中起來,然后每人從中拿一張別人的賀年卡,則四張賀年卡不同的分配方式有()(A)6種(B)9種
2025-03-26 05:42
【摘要】排列組合二項定理排列組合二項定理知識要點一、兩個原理.1.乘法原理、加法原理.2.可以有重復元素的排列.從m個不同元素中,每次取出n個元素,元素可以重復出現(xiàn),按照一定的順序排成一排,那么第一、第二……第n位上選取元素的方法都是m個,所以從m個不同元素中,每次取出n個元素可重復排列數(shù)m·m·…m=mn..例如:n件物品放入m個抽屜中,不限
2025-06-25 23:05
【摘要】數(shù)學廣角之排列組合主講田村中心小學劉勝門票5元可以怎樣付錢?門票5元門票5元門票5元門票5元門票5元有幾種穿法?1234每兩個人進行一場比賽,一共要比幾場?買一個拼音本,可以怎樣付錢?
2024-12-13 17:38
【摘要】第六節(jié)排列與組合(理)重點難點重點:1.兩個計數(shù)原理的理解和應用.2.排列與組合的定義、計算公式,組合數(shù)的兩個性質(zhì).難點:1.如何區(qū)分實際問題中的“類”與“步”.2.組合數(shù)的性質(zhì)和有限制條件的排列組合問題.知識歸納1.分類計數(shù)原理完成一件事,
2025-08-07 11:23
【摘要】例解排列組合中涂色問題于涂色問題有關(guān)的試題新穎有趣,其中包含著豐富的數(shù)學思想。解決涂色問題方法技巧性強且靈活多變,故這類問題的利于培養(yǎng)學生的創(chuàng)新思維能力、分析問題與觀察問題的能力,有利于開發(fā)學生的智力。本文擬總結(jié)涂色問題的常見類型及求解方法。一、區(qū)域涂色問題1、根據(jù)分步計數(shù)原理,對各個區(qū)域分步涂色,這是處理染色問題的基本方法。例1、用5種不同的顏色給圖中標①、②、③、④
2025-03-25 02:36