【摘要】主要內容典型例題第五章不定積分習題課積分法原函數(shù)選擇u有效方法基本積分表第一換元法第二換元法直接積分法分部積分法不定積分幾種特殊類型函數(shù)的積分一、主要內
2025-08-11 11:12
【摘要】本科畢業(yè)論文題目:有理函數(shù)不定積分的研究TheStudyofIndefiniteIntegralofRationalFunction
2025-01-12 16:14
【摘要】第四章不定積分一、不定積分的概念和性質1.原函數(shù):若,則稱為的一個原函數(shù).2.不定積分:若,則.3.不定積分的基本性質:(1)或;(2)或.例1(1)若是的一個原函數(shù),求;(2)若是的一個原函數(shù),求;(3)若是的一個原函數(shù),求;(4)若,求;(5)求;(6)若,求.解(1)因為,所以.(2)因為,所以.(
2025-06-25 05:06
【摘要】1第4章不定積分內容概要名稱主要內容不定積分不定積分的概念設()fx
2025-01-09 22:45
【摘要】Chapt8不定積分教學目標:1.熟練掌握不定積分概念以及基本積分公式;2.掌握不定積分換元法與分部積分法;3.掌握有理函數(shù)的不定積分.§1不定積分概念與基本積分公式一、原函數(shù)不定積分是求導運算的逆運算.四、基本積分表三、不定積分的幾何意義二
2025-07-31 09:50
【摘要】不定積分例題1.求不定積分??31dxx.(Cxxxx??????312arctan31)1(ln2122)2.求不定積分??41dxx(??xx21arctan2212Cxxxx?????1212ln8222或Cxxxx
2025-01-08 21:20
【摘要】1第五章不定積分(A)1.已知函數(shù)()yfx?的導數(shù)等于2x?,且2x?時5y?,求這個函數(shù).解21()(2)22fxxxxxC??????d將2x?,5y?代入上式得:1C??21()212fxx
2025-01-09 08:33
【摘要】作業(yè)習題求下列不定積分。1、;2、;3、;4、;5、;6、;7、;8、;9、;10、;11、;12、;13、;14、;15、;16、。作業(yè)習題參考答案:1、解:。2、解:。3、解:。4、解:。5、解:。6、解:。7、解:。8、解:。9、解:
2025-01-14 12:50
【摘要】經濟數(shù)學不定積分在經濟問題中的應用第4章不定積分不定積分的概念與基本積分公式不定積分在經濟問題中的應用換元積分法分部積分法經濟數(shù)學不定積分在經濟問題中的應用不定積分在經濟問題中的應用?)(xCC?已知某邊際成本函數(shù)
2025-05-11 05:15
【摘要】不定積分內容概要名稱主要內容不定積分不定積分的概念設,,若存在函數(shù),使得對任意均有或,則稱為的一個原函數(shù)。的全部原函數(shù)稱為在區(qū)間上的不定積分,記為注:(1)若連續(xù),則必可積;(2)若均為的原函數(shù),則。故不定積分的表達式不唯一。性質性
2025-04-04 05:18
【摘要】經濟數(shù)學——新編微積分二、不定積分的計算(1)第一類換元法(2)第二類換元法1.換元積分法經濟數(shù)學——新編微積分?xxd2cosCx?2sin解決方法將積分變量換成令xt2???xxd2costtdcos21??Ct??sin21Cx??2s
2025-02-21 12:44
【摘要】返回后頁前頁§3有理函數(shù)和可化為一、有理函數(shù)的部分分式分解本節(jié)給出了求有理函數(shù)等有關類型的四、某些無理函數(shù)的不定積分三、三角函數(shù)有理式的不定積分二、有理真分式的遞推公式有理函數(shù)的不定積分不定積分的方法與步驟.返回返回后頁前頁101101()()()n
2025-08-11 09:08
【摘要】1不定積分21、原函數(shù)如果在區(qū)間I內,可導函數(shù))(xF的導函數(shù)為)(xf,即Ix??,都有)()(xfxF??或dxxfxdF)()(?,那么函數(shù))(xF就稱為)(xf或dxxf)(在區(qū)間I內的原函數(shù).定義原函數(shù)存在定理
2024-12-08 05:29
【摘要】數(shù)學競賽主題:不定積分策劃書一、活動背景當我們步入大學的那一刻,數(shù)學也陪伴我們而來,只是褪去了表面的外衣,讓我們更深入地學習它,體味它的博大精深。知識深度的加強使得有些人對待數(shù)學的興趣降了溫。因此,展現(xiàn)數(shù)學的趣味和魅力,讓同學們重拾并加強對數(shù)學的學習興趣對我院學風的完善,文化的深化顯得尤為重要二、活動目的;,學習英語,提高英語水平和
2025-01-19 03:37
【摘要】§3.分部積分法設u(x),v(x)有連續(xù)導數(shù),則vuvuvu?????)(vuvuvu??????)(兩邊取積分:????????xduvxdvuxdvu)(?vd?vud?ud????udvvuvdu——分部積分公式????????xduvxdvuxdvu)(??
2025-08-05 18:12